首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6923篇
  免费   577篇
  国内免费   212篇
电工技术   330篇
综合类   228篇
化学工业   1157篇
金属工艺   227篇
机械仪表   284篇
建筑科学   466篇
矿业工程   161篇
能源动力   114篇
轻工业   2106篇
水利工程   122篇
石油天然气   258篇
武器工业   35篇
无线电   491篇
一般工业技术   828篇
冶金工业   208篇
原子能技术   66篇
自动化技术   631篇
  2024年   55篇
  2023年   146篇
  2022年   281篇
  2021年   389篇
  2020年   275篇
  2019年   164篇
  2018年   204篇
  2017年   188篇
  2016年   153篇
  2015年   218篇
  2014年   250篇
  2013年   327篇
  2012年   340篇
  2011年   336篇
  2010年   286篇
  2009年   266篇
  2008年   242篇
  2007年   218篇
  2006年   210篇
  2005年   151篇
  2004年   123篇
  2003年   149篇
  2002年   130篇
  2001年   88篇
  2000年   85篇
  1999年   114篇
  1998年   75篇
  1997年   63篇
  1996年   74篇
  1995年   58篇
  1994年   69篇
  1993年   49篇
  1919年   35篇
  1917年   48篇
  1916年   78篇
  1915年   88篇
  1914年   54篇
  1913年   61篇
  1912年   82篇
  1911年   84篇
  1910年   94篇
  1909年   97篇
  1908年   102篇
  1907年   101篇
  1906年   94篇
  1905年   118篇
  1904年   150篇
  1903年   94篇
  1902年   65篇
  1901年   74篇
排序方式: 共有7712条查询结果,搜索用时 31 毫秒
1.
2.

该文基于掺钪AlN薄膜制备了高次谐波体声波谐振器(HBAR),研究了钪(Sc)掺杂浓度对AlN压电薄膜材料特性及器件性能的影响。研究表明,当掺入Sc的摩尔分数从0增加到25%时,压电应力系数e33增加、刚度 下降,导致Al1-xScxN压电薄膜的机电耦合系数 从5.6%提升至15.8%,从而使HBAR器件的有效机电耦合系数 提升了3倍。同时,当Sc掺杂摩尔分数达25%时,Al1-xScxN(x为Sc掺杂摩尔分数)压电薄膜的声速下降13%,声学损耗提高,导致HBAR器件的谐振频率和品质因数降低。  相似文献   

3.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
4.
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures.  相似文献   
5.
In this study, the anti-atherosclerotic properties of three marine phospholipids (MPLs) extracts from fishery by-products including codfish roe, squid gonad, and shrimp head are verified. Their effects on key factors involved in atherosclerosis are examined and compared to explore whether the differences in their constitutions lead to the differences in the function. All three MPLs dampen oxidation of low- density lipoproteins (LDL) in vitro. Treating RAW264.7 macrophages and HUVECs endothelial cells with each MPLs ranging 10–100 µg mL−1 does not decrease cell viability, yet ox-LDL caused cytotoxicity of both cells are alleviated by 50 or 100 µg mL−1 MPLs treatment. In addition, the three MPLs reduce ox-LDL induced macrophage foam-like transition, mainly through inhibition of lipid uptake. Of the three MPLs, the one from squid gonad exhibits the best effect. On the other hand, all three MPLs modulate inflammatory responses, equally, by inhibiting the adhesion of monocytes to endothelial cells, and decreasing secretion of pro-inflammatory cytokines IL-6 and MCP-1. Using a high-cholesterol diet induced zebrafish model, it is found that all three MPLs, especially the one from squid gonad, alleviates cholesterol accumulation in early plaques, and decreases total cholesterol as well as lipid peroxide in vivo. Practical Applications: As a way of making the best of the increasingly scarce marine resources, valuable lipid components can be recovered from by-products and wastes from the fishery industry. Here, we tested the anti-atherosclerotic effects and the mechanisms of three MPLs extracted from codfish roe, squid gonad, and shrimp head. Our study provides further evidence that marine phospholipids extracted from fishery by-products could protect against atherosclerosis, and helps to elucidate the structure-function relationship of MPLs.  相似文献   
6.
基于神经网络和遗传算法的锭子弹性管性能优化   总被引:1,自引:0,他引:1  
为得到减振弹性管对下锭胆的支承弹性和锭子高速运动下的稳定性等性能的最优匹配效率,依据减振弹性管的等效抗弯刚度及底部等效刚度系数公式,利用MatLab数值分析软件构建弹性管抗弯刚度和底部挠度数学模型。首先,结合Isight优化软件基于径向基神经网络构建其近似模型,且使精度达到可接受水平,并以模型的关键结构参数弹性模量、螺距、槽宽、壁厚为设计变量,结合遗传算法对弹性管抗弯刚度和底部挠度进行多目标优化设计,得到Pareto最优解集和Pareto前沿图,确定出减振弹性管结构工艺参数的优化方案。通过对优化数据进行分析发现,该方案在保证减振弹性管弹性的同时,其底部振幅明显减弱。  相似文献   
7.
In order to improve the dispersity and stability of the nano‐SiO2 aqueous system with high solid content, a kind of polyacrylic acid dispersant with methoxysilicon end groups (KH590‐PAA) was synthesized by photopolymerization of acrylic acid (AA) initiated with (3‐mercaptopropyl)trimethoxysilane (KH590). After adding KH590‐PAA into the nano‐SiO2 aqueous dispersion system (20 wt% solid content), the viscosity and the curing time of the system were measured with a rotational viscometer and the inverted bottle method. Moreover, the dispersion mechanism of KH590‐PAA for the nano‐SiO2 aqueous system was researched by measuring the adsorption capacity, the particle size and the zeta potential of the nanoparticles with a conductivity meter, dynamic light scattering, SEM and TEM, respectively. The results showed that the methoxysilicon groups in KH590‐PAA could react with hydroxyl groups on the surface of nano‐SiO2 in the process of stirring, which enhanced the adsorption capacity of the dispersant and then increased the surface charge of the particles. Therefore, electrostatic repulsion and steric hindrance effects between the SiO2 nanoparticles could be further enhanced by adding the KH590‐PAA dispersant, and then the nano‐SiO2 aqueous system exhibited better dispersity and stability. Besides, the dispersion properties of SiO2 nanoparticles in water were closely related to the addition amount and the molecular weight of the KH590‐PAA dispersant. © 2018 Society of Chemical Industry  相似文献   
8.
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being.  相似文献   
9.
FeO-doped TiO2 nanoparticle photocatalysts were immobilized onto the surface of fibrous activated carbon (ACF) via a sol-gel process. As an adsorbent and photocatalyst, FeO-TiO2 on immobilized ACFs (FeO-TiO2/ACF) greatly improved the photocatalysis rate of hydrogen production as compared with pure TiO2 and ACF-TiO2 under UV irradiation and visible light. The addition of ACFs surface significantly reduced the photogenerated pairs of electrons-hole recombination, thereby promoting the photocatalysis action of doped photo-metal oxides of FeO-TiO2. Co-doping of FeO onto the lattice of the TiO2 approach can improve the absorption activity of visible light through photo-metal oxide of TiO2 and further enhance hydrogen production under visible light. The photocatalytic fabrics (FeO-TiO2/ACF) were effortlessly split out from the experimental solution for re-utilization and exhibited high stability even after five complete regeneration cycles.  相似文献   
10.
Deformation behavior of stoichiometric blends made from poly(styrene-co-styrenesulfonic acid) (SPS) and poly(styrene-co-4-vinylpyridine) (SVP) was investigated by TEM observation of strained thin films. An FTIR investigation revealed that ionic cross-links were formed between the component polymers upon blending due to intermolecular ion-ion interactions, which arose from proton transfer from sulfonic acid groups to pyridine groups. TEM observations indicate that the deformation mode of the blends changed from crazing only to crazing plus shear deformation, with the shear contribution becoming larger, as the ion content in the blends increased. Such changes in deformation mode can be understood as arising from an increase in the ‘effective’ strand density due to the formation of ionic cross-links upon blending. It was also found that the ionic cross-links via pyridinium cation/sulfonate anion ion pairs were more effective in inducing the transition of deformation mode than ionic cross-links via -SO3/Na+ or -SO3/Ca2+ ion pairs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号