首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   3篇
轻工业   1篇
无线电   2篇
一般工业技术   2篇
  2019年   1篇
  2018年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
This study is focused on aligning carbon nanotubes in polypropylene matrix by melt spinning. Two different weight percentages (0.5% and 1.0%) of nanotubes were used for the synthesis of the nanocomposite fibers. The effect of the nanotubes on the crystallization and mechanical behavior of polypropylene as well as the effect of draw ratio on the nanocomposite morphology and properties is also discussed. Correlation of fiber morphology and nanotube alignment was done using differential scanning calorimetry, wide‐angle X‐ray diffraction, and transmission electron microscopy. Significant improvement in tensile modulus and tensile strength were observed, which is characteristic of a highly aligned nanotube system. A substantial vincrease in the onset of decomposition was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3844–3850, 2007  相似文献   
2.
Nanocomposite scaffolds based on nanofibrous poly(epsilon-caprolactone) (PCL) and nanohydroxyapatite (nanoHA) with different compositions (wt%) were prepared by electrostatic co-spinning to mimic the nano-features of the natural extracellular matrix (ECM). NanoHA was found to be well dispersed in polymers up to the addition of 20 wt%, after ultrasonication. The composite scaffolds were characterized for structure and morphology using XRD, EDX, SEM, and DSC. The scaffolds have a porous nanofibrous morphology with fibers (majority) having diameters in the range of 450-650 nm, depending on composition, and interconnected pore structures. SEM, EDX, and XRD analyses have confirmed the presence of nanoHA in the fibers. As the nanoHA content in the fibers increases, the surface of fibers becomes rougher. The mechanical (tensile) property measurement of the electrospun composites reveals that as the nanoHA content increases, the ultimate strength increases from 1.68 MPa for pure PCL to 2.17, 2.65, 3.91, and 5.49 MPa for PCL/nanoHA composites with the addition of 5, 10, 15, and 20 wt% nanoHA, respectively. Similarly the tensile modulus also increases gradually from 6.12 MPa to 21.05 MPa with the increase of nanoHA content in the PCL/nanoHA fibers, revealing an increase in stiffness of the fibers due to the presence of HA. DSC analysis reveals that as nanoHA in the composite scaffolds increases, the melting point slightly increases due to the good dispersion and interface bonding between PCL and nanoHA.  相似文献   
3.
Vacuum assisted resin infusion molding (VARIM) was used to produce multiscale fiber reinforced composites (M-FRCs) based on carbon nanofibers dispersed in an epoxy resin. Flexural, interlaminar shear strength (ILSS) and thermomechanical tests are presented for the 0.1 wt% and 1 wt% M-FRCs and compared with the neat fiber reinforced composites (FRCs). Flexural strength and modulus increased (16–20%) and (23–26%), respectively for the 0.1 wt% and 1 wt% M-FRCs when compared to the neat FRCs. ILSS properties increased (6% and 25%) for the 0.1 wt% and 1 wt% M-FRCs, respectively when compared to neat FRCs. The glass transition temperatures (Tg) of both M-FRC samples were 25 °C higher than the neat FRC. Coefficients of thermal expansion (CTE) of the M-FRC samples improved compared to the neat FRC. The improved Tg and CTE properties in the M-FRC samples are attributed to synergistic interactions between the CNF/PNC matrix and glass fibers.  相似文献   
4.
A new form of diode laser source for wavelength-division multiplexing (WDM) applications is reported. The source has been designed to operate in systems requiring wavelength separations between channels of more than 1 nm and provides exact control of channel separation with low crosstalk. Simultaneous multiwavelength generation is also possible.<>  相似文献   
5.
Aligned nanofibrous blends of poly (d, l-lactide-co-glycolide) (PLGA) and collagen with various PLGA/collagen compositions (80/20, 65/35 and 50/50) were fabricated by electrospinning and characterized for bone tissue engineering. Morphological characterization showed that the addition of collagen to PLGA resulted in narrowing of the diameter distribution and a reduction in average diameter. Differential scanning calorimetric (DSC) studies showed that the triple helix structure of the native collagen was not destroyed during the fabrication process. However, the blending had a marked effect on the overall enthalpy of the blends, whereby the total enthalpy decreased as the collagen content decreased. Thermogravimetric analysis showed the addition of collagen increased the hydrophilicity of the scaffolds. The crosslinking of collagen to increase the biostability was done using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and an overall ∼25% degree of crosslinking was achieved. The EDC crosslinking had little effect on the nanofibrous morphology of the 80/20 blend system; however, the nanofibrous features were compromised to some extent at higher collagen concentrations. The mechanical characterization under dry and wet conditions showed that increasing collagen content resulted in a tremendous decrease in the mechanical properties. However, crosslinking resulted in the increase in elastic modulus from 47 MPa to 83 MPa for the wet PLGA/Collagen 80/20 blend system, with little effect on the tensile strength. In conclusion, the aligned nanofibrous scaffold used in this study constitutes a promising material for bone tissue engineering.  相似文献   
6.
7.
Picosecond pulse generation by active mode locking has been achieved simultaneously at two wavelengths using a multichannel grating cavity Laser. For a spectral channel separation of 2.2 nm, pulses of duration of 60 ps and with a spectral width of 11 GHz have been obtained. The pulse widths are limited by the spectral dispersion of the grating used  相似文献   
8.
Polypyrrole coated oxidized multiwalled carbon nanotubes (oMWCNT/Ppy) were applied to determine the adsorption characteristics of Pb(II) and Cu(II) from their aqueous solutions. Structural and morphological characterization studies using scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopy showed successful preparation of the oMWCNT/Ppy composite. The influence of pH, contact time, and initial metal ion concentration on the adsorption of Pb(II) and Cu(II) was studied. The adsorption processes fitted well with Langmuir isotherm and pseudo-second-order kinetic models. The maximum adsorption capacities for Pb(II) and Cu(II) were determined as 26.32 and 24.39 mg/g, respectively. Desorption studies indicated that the oMWCNT/Ppy composite could be reused for five cycles with minimum loss of its initial adsorption capacity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号