首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学工业   14篇
能源动力   7篇
一般工业技术   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
This paper investigates calcium oxide assisted hydrogen production from biogas. Preliminary experiments were performed to compare the catalytic performance of combined carbon dioxide reforming and partial oxidation of biogas among four different adsorbent (CaO)/catalyst (Ni/SiO2·MgO) arrangements; i.e. (i) Ni/SiO2·MgO before CaO, (ii) CaO before Ni/SiO2·MgO, (iii) Ni/SiO2·MgO mixed with CaO, and (iv) Ni/SiO2·MgO without CaO. The mixture of CaO and Ni/SiO2·MgO was found to be the best arrangement, offering the highest hydrogen yield. Thermodynamic investigation of the integrated sorption-reaction systems for hydrogen production from biogas was performed. The system can be operated under thermal neutral condition when appropriate operating parameters are adjusted. Finally based on the thermal neutral operation, the effects of H2O/CH4 and CaO/CH4 ratios on the required O2/CH4 ratio, hydrogen yield, hydrogen concentration and CO/H2 ratio in product were determined. Obviously the use of CaO adsorbent can improve hydrogen production and there is an optimum H2O/CH4 ratio which offers the highest hydrogen production at each CaO/CH4 ratio. Increasing H2O/CH4 ratio generally increases H2/CO ratio but decreases hydrogen concentration in the product.  相似文献   
2.
This paper deals with the integrated system of solid oxide fuel cell (SOFC), palladium membrane reactor (PMR), and CO2 sorption enhancement (SE) unit. Three configurations of the SOFC systems fed by biogas are considered, i.e., PMR–SOFC, SE–PMR–SOFC, and SE–PMR–SOFC with a retentate gas recycling (SER–PMR–SOFC). The SOFC system equipped with a conventional reformer (CON–SOFC) is considered as a base case. The simulation results show that the capture of CO2 in biogas before being fed to PMR (SE–PMR–SOFC) can improve H2 recovery. The performance of SE–PMR–SOFC can be further enhanced by recycling retentate gas from PMR to CO2 sorption enhancement unit (SER–PMR–SOFC). Compared to CON–SOFC, both SE–PMR–SOFC and SER–PMR–SOFC give higher power density and thus require smaller stack size (the stack size reduction of 1.55% and 8.27% are observed for SE–PMR–SOFC and SER–PMR–SOFC, respectively). The economic analysis is performed to identify the potential benefits of each SOFC configuration. The results indicate that SE–PMR–SOFC and SER–PMR–SOFC are not cost-effective systems compared with CON–SOFC; however, the capture of CO2 in these SOFC systems offers an environmental benefit. High %total CO2 capture and low cost of CO2 capture are achieved under these SOFC systems.  相似文献   
3.
This study evaluates the use of cracking for the removal of carbon from fuels to be used in a power generation process. Unlike conventional power generation systems, the proposed system includes a cracking unit, the function of which is to convert primary fuels into H2 rich syngas and solid carbon, thus avoiding the emission of CO2 and the need for carbon capture and storage (CCS) in the power generation system. Based on the thermodynamic analysis of equilibrium reactions in the cracker, it is demonstrated that the operating temperature has a significant influence on the carbon capture rate achieved and the composition of the syngas. Carbon in the fuel can be captured in solid form from hydrocarbon fuels when operating the cracker at sufficiently high temperatures; however, only a portion of carbon can be captured in a solid form from oxygenated hydrocarbon fuels, with the maximum carbon capture rate being achieved at an optimum temperature. An energy analysis, which takes into account the energy penalty of CCS for the conventional power generation system, reveals that the net available energy from the proposed system is still not as high as that of the conventional system with CCS; however, the solid carbon can be of high commercial value when appropriate technology is employed to convert the carbon byproduct into a high-added-value carbon product such as carbon black or carbon nanotubes (CNTs).  相似文献   
4.
The role titanate particle structure plays in governing its characteristics upon calcining and their ensuing influence on photocatalytic performance was investigated. Titanate nanotubes and nanoribbons were prepared by hydrothermal treatment of Aeroxide P25 and then calcined at temperatures in the range 200 - 800 °C. Heat treatment directly transformed the nanotubes to anatase while nanoribbon transformation to anatase occurred via a TiO(2)(B) intermediate phase. The nanoribbon structure also provided an increased resistance to sintering, allowing for retention of the original {010} facet of the titanate nanosheets up to 800 °C. The changing material properties with calcining were found to influence the capacity of the particles to photodegrade oxalic acid and methanol. The nanotubes provided an optimum photoactivity following calcination at 500 °C with this point representing a transition between the relative dominance of crystal phase and surface area on performance. The comparatively smaller initial surface area of the nanoribbons consigned this characteristic to a secondary role in influencing photoactivity with the changes to crystal phase dominating the continually improving performance with calcination up to 800 °C. The structural stability imparted by the nanoribbon architecture during calcination, in particular its retention of the {010} facet at temperatures >700 °C, advanced its photocatalytic performance compared with the nanotubes. This was especially the case for methanol photooxidation whose primary degradation mechanism relies on hydroxyl radical attack and was facilitated by the {010} facet. The effect was not as pronounced for oxalic acid due to its higher adsorption on TiO(2) and therefore greater susceptibility to oxidation by photogenerated holes. This study demonstrates that, apart from modulating sintering effects and changes to crystal phase, the titanate nanostructure influences particle crystallography which can be beneficial for photocatalytic performance.  相似文献   
5.
Theoretical study of fuel gas (H2 + CO) production for SOFC from bioethanol was carried out to compare performances between two reforming technologies, including steam reforming (SR) and supercritical-water reforming (SCWR). It demonstrates that the fuel gas productions are comparable among the two reforming systems; however, SCWR requires the operation at much higher temperature and pressure than SR. The maximum hydrogen yield can be obtained at 850 K, atmospheric pressure, ethanol to water molar feed ratio of 1:20 for SR system and at 1300 K, 22.1 MPa, and ethanol to water feed ratio of 1:20 for SCWR. The use of a distillation column to purify the bioethanol feed was proven to improve the fuel conversion efficiency of both systems. The analysis reveals that SCWR is a promising system for fuel production for SOFC when a gas turbine is incorporated to the system for energy recovery. Further, it is not necessary to distil bioethanol to obtain too high ethanol recovery (i.e. >90%) as higher energy consumption at the distillation column could lead to lower overall thermal efficiency.  相似文献   
6.
A thermodynamic analysis based on the principle of minimising the Gibbs free energy is performed for hydrogen production from glycerol. When the operating parameters such as water/glycerol ratio (WGR), oxygen/glycerol ratio (OGR) and operating temperature (T) are carefully chosen, the energy self‐sufficient conditions can be achieved. Two levels of energy self‐sufficient, (i) within the reformer and (ii) within the overall system, are considered. Unlike the consideration in the reformer level reported in most works in literature, the consideration in the overall system level represents more realistic results based on the fact that some energy is required for heating up the feeds to a desired operating temperature. The obtained results demonstrate that the maximum hydrogen production significantly decreases from 5.65 mol H2/mol glycerol for the reformer level to 3.31 mol H2/mol glycerol for the system level, emphasising the significant demand of energy for feed preheating. © 2011 Canadian Society for Chemical Engineering  相似文献   
7.
This work proposes the application of methane decomposition (MD) as a fuel processor to replace methane steam reforming (MSR) for hydrogen production for a methane-fuelled solid oxide fuel cell (SOFC) system. In this work, comparison between the MD–SOFC and the MSR–SOFC was performed in terms of SOFC performances and economic analysis to demonstrate a benefit of using MD as a fuel processor. Energy analysis of SOFC system was evaluated based on thermally self-sufficient condition where no external energy is required for the system. Although the MD–SOFC system offers lower electrical efficiency than that of the MSR–SOFC as solid carbon is generated without being further combusted to generate energy; however, the MD–SOFC stack can be operated at higher power density due to high purity of hydrogen supplied to the fuel cell, resulting in smaller size of the system when compared to the MSR–SOFC. Moreover, the MD–SOFC system is less complicated than that of the MSR–SOFC as the CCS facility is not necessary to be included to reduce CO2 emission. Economic analysis demonstrated that the SOFC system with MD is more competitive than the conventional system with MSR when considering the valuable by-products of solid carbon even with the low-valued carbon black. It is suggested that the success of this proposed SOFC system with MD relies on the technology development on cogeneration of hydrogen and valuable carbon products.  相似文献   
8.
Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H2 yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H2 yield in low (600–900 K) and high (900–1200 K) temperature ranges, respectively. The maximum H2 yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H2 yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H2 purity because the gas product is not diluted with N2 from the air. The use of pure O2 and afterburner products (ABP) stream were also considered at the System level. The maximum H2 yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation.  相似文献   
9.
Nanoscale Ce‐ZrO2, synthesized by cationic surfactant‐assisted method, has useful partial oxidation activity to convert palm fatty acid distillate (PFAD; containing C16–C18 compounds) to hydrogen‐rich gas with low carbon formation problem under moderate temperatures. At 1123 K with the inlet O/C ratio of 1.0, the main products from the reaction are H2, CO, CO2, and CH4 with slight formations of gaseous high hydrocarbons (i.e., C2H4, C2H6, and C3H6), which could all be eliminated by applying higher O/C ratio (above 1.25) or higher temperature (1173 K). Compared with the microscale Ce‐ZrO2 synthesized by conventional coprecipitation method, less H2 production with relatively higher C2H4, C2H6, and C3H6 formations are generated from the reaction over microscale Ce‐ZrO2. The better reaction performances of nanoscale Ce‐ZrO2 are linearly correlated with its higher specific surface area as well as higher oxygen storage capacity and lattice oxygen mobility, according to the reduction/oxidation measurement and 18O/16O isotope exchange study. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   
10.
This paper presents a study of glycerol etherification with tert-butyl alcohol catalyzed by Amberlyst 15 in reactive distillation (RD). A thermodynamic analysis is firstly investigated by applying three group contribution methods, to determine the equilibrium composition by minimization of the Gibbs free energy and to compare the predicted values against measured data. Next, the kinetic model parameters are regressed by matching measured data from an autoclave reactor. The activity based Langmuir-Hinshelwood model is found to give the best representation of the reaction rate data. The regressed kinetic rate expressions are also compared against independently measured data in fixed bed reactors reported in the literature and found to give a good match. Finally, using the developed models, it is shown by simulation as well as verification by experiments, that the suitable RD configuration for the production of glycerol ethers in RD is the one consisting of 6 rectifying stages and 6 reaction stages without stripping stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号