首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   4篇
电工技术   1篇
综合类   1篇
化学工业   29篇
金属工艺   1篇
机械仪表   2篇
矿业工程   1篇
能源动力   8篇
轻工业   3篇
水利工程   1篇
无线电   2篇
一般工业技术   6篇
冶金工业   3篇
自动化技术   8篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   9篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有66条查询结果,搜索用时 0 毫秒
1.
A continuous-flow ultrasound-assisted oxidative desulfurization(UAOD) of partially hydro-treated diesel has been investigated using hydrogen peroxide-formic acid as simple and easy to apply oxidation system. The effects of different operating parameters of oxidation stage including residence time(2–24 min), formic acid to sulfur molar ratio(10–150), and oxidant to sulfur molar ratio(5–35) on the sulfur removal have been studied using response surface methodology(RSM) based on Box–Behnken design. Considering the operating costs of the continuous-flow oxidation stage including chemical and electrical energy consumption, the appropriate values of operating parameters were selected as follows: residence time of 16 min, the formic acid to sulfur molar ratio of 54.47, and the oxidant to sulfur molar ratio of 8.24. In these conditions, the sulfur removal and the volume ratio of the hydrocarbon phase to the aqueous phase were 86.90% and 4.34, respectively. By drastic reduction in the chemical consumption in the oxidation stage, the volume ratio of the hydrocarbon phase to the aqueous phase was increased up to 10. Therefore, the formic acid to sulfur molar ratio and the oxidant to sulfur molar ratio were obtained 23.64 and 3.58, respectively, which lead to sulfur removal of 84.38% with considerable improvements on the operating cost of oxidation stage in comparison with the previous works.  相似文献   
2.
Vane liquid–gas demisters are widely used as one of the most efficient separators. To achieve higher liquid disposal and to avoid flooding, vanes are enhanced with drainage channels. In this research, the effects of drainage channel geometry parameters on the droplet removal efficiency have been investigated applying CFD techniques. The observed parameters are channel angle, channel height and channel length. The gas phase flow field was determined by the Eulerian method and the droplet flow field and trajectories were computed applying the Lagrangian method. The turbulent dispersion of the droplets was modeled using the discrete random walk (DRW) approach. The CFD simulation results indicate that by applying DRW model, the droplet separation efficiency predictions for small droplets are closer to the corresponding experimental data. The CFD simulation results showed that in the vane, enhanced with drainage channels, fewer low velocity sectors were observed in the gas flow field due to more turbulence. Consequently, the droplets had a higher chance of hitting the vane walls leading to higher separation efficiency. On the other hand, the parameters affect the liquid droplet trajectory leading to the changes in separation efficiency and hydrodynamic characteristic of the vane. To attain the overall optimum geometry of the drainage channel, all three geometry parameters were simultaneously studied employing 27 CFD simulation cases. To interpolate the overall optimal geometry a surface methodology method was used to fit the achieved CFD simulation data and finally a polynomial equation was proposed.  相似文献   
3.
4.
Due to their work conditions, research reactor personnel are exposed to ionising nuclear radiations. Because the absorbed dose values are different for different tissues due to variations in sensitivity, in this work personal dosimetry has been performed under normal working conditions at anatomical locations relevant to more sensitive tissues as well as for the whole body by employing a Rando phantom and thermoluminescent dosemeters (TLDs). Fifty-two TLDs-100H were positioned at high-risk organ locations such as the thyroid, eyes as well as the left breast, which was used to assess the whole-body dose in order to study the absorbed doses originating from selected locations in the vicinity of the reactor. The results have employed the tissue weighting factors based on International Commission on Radiological Protection ICRP 103 and ICRP 60 and the measured results were below the dose limits recommended by ICRP. The mean effective dose rates calculated from ICRP 103 were the following: whole body, 30.64-6.44 μSv h(-1); thyroid, 1.22-0.23 μSv h(-1); prostate, 0.085-0.045 μSv h(-1); gonads, 1.00-0.51 μSv h(-1); breast, 3.68-0.77 μSv h(-1); and eyes, 33.74-7.01 μSv h(-1).  相似文献   
5.
Studies of the simultaneous creep and oxidation of an Fe-lwt pct Al alloy at constant stresses of 16 to 26 MN/m2 in the temperature range 973 to 1073 K have shown that the steady state creep obeys a power law. The stress exponentn was found to be 6.9 for creep in an argon atmosphere(Po2 = 10-3 mbar). Values of the apparent activation energy for creep were in the range 225 to 351 kJ/mol and appeared to be dependent on theP o 2 of the test environment. Oxidationstrengthening (è decreasing) o°Curred at 998 K but only atP o 2 = 10-3 mbar and was primarily due to intergranular oxidation and the mechanical constraint of a strongly adherent scale. Oxidationweakening (è increasing), however, o°Curred at 973 to 1073 K in environments of the lowestP o 2 (10-9 and 10-5 mbar) and in the highestP o 2 (162 to 1013 mbar). The factors contributing to weakening are believed to be oxidation-induced vacancies, weakly adherent scales and the loss of solute strengthening aluminum through selective oxidation. M. H. SHAHHOSSEINI, formerly a Research Student at the University of Manchester.  相似文献   
6.
Studies of the simultaneous creep and oxidation of Fe-1Si and Fe-4Si alloys at a constant tensile stress of 16 N· mm–2 at 973–1073 K have shown that scales formed at oxygen partial pressures of 20–1013 mbar were thicker by a factor of 2 than those formed on uncrept specimens. Scales on uncrept alloys comprised alternate layers of wustite and fayalite, whereas scales on crept alloys exhibited an additional external layer of magnetite. Only intergranular oxidation (fayalite) was observed in uncrept alloys, but crept alloys showed both intra- and intergranular oxidation (silica). Uniquely nodular scales were formed only on the Fe-4Si alloy on crept and uncrept specimens. Oxidized, uncrept Fe-1Si showed a fine-grained ferrite substrate which was absent in the crept alloy. It is believed that oxide growth stresses stimulated a recrystallization process.  相似文献   
7.
Mechanical systems are always suffering from the effects of temperature dependent friction forces where the system is operated in a wide range of temperature. Temperature and its variation play an important role in friction force in mechanical systems. If it is not compensated, it will tend to unwanted consequences, including steady‐state errors, limit cycling, and hunting. Therefore, it is necessary to take the temperature effects into account. This has been a strong motivation for the researchers to work on temperature effects on joint friction. In this paper, an adaptive compensation (control) scheme is proposed and applied to a 2‐degree‐of‐freedom serial robot manipulator by taking the temperature effects into account on the joints friction. In the proposed control scheme, the temperature is not required to be sensed. In this paper, joint friction is described by LuGre dynamic model with temperature dependent parameters. These parameters are described by some functions with unknown temperature dependent terms. According to the mathematical and practical concepts, the temperature dependent friction is decomposed into a viscous term and a disturbance term. An adaptive controller is designed to compensate the friction effect and it is shown that the proposed controller relaxes the condition for a priori knowledge about the environment characteristics, including the upper and lower bounds of the environment temperature and the parameters of the functions, describing the temperature dependent joint frictions. The stability and convergence of the joint position and velocity are proved in the sense of Lyapunov and then the proposed method is confirmed by the simulations.  相似文献   
8.
A specific and reversible method is reported to engineer cell‐membrane function by embedding DNA‐origami nanodevices onto the cell surface. Robust membrane functionalization across epithelial, mesenchymal, and nonadherent immune cells is achieved with DNA nanoplatforms that enable functions including the construction of higher‐order DNA assemblies at the cell surface and programed cell–cell adhesion between homotypic and heterotypic cells via sequence‐specific DNA hybridization. It is anticipated that integration of DNA‐origami nanodevices can transform the cell membrane into an engineered material that can mimic, manipulate, and measure biophysical and biochemical function within the plasma membrane of living cells.  相似文献   
9.
Engineering with Computers - In this paper, triangular prismatic cells for background integration on mesh-free methods are introduced and the Gauss integration scheme is developed in these...  相似文献   
10.
A PES-based composite nanofiltration membrane was prepared by spreading a thin layer of sodium tripolyphosphate (STPP)-modified chitosan (CS) on a PES membrane. Two approaches of modification were employed: coating, and injecting the chitosan solution into PES membrane by applying pressure. Physicochemical properties of the prepared membranes were characterized by FTIR-ATR, zeta potential, contact angle, AFM and FE-SEM methods. AFM images showed a denser and more compact surface for STPP-modified membranes compared to the unmodified one. The membranes prepared by the second approach illustrated favorable properties: the increase of both flux and rejection. Engaging of -NH2 groups in CS with polyanionic phosphate groups of STPP resulted in less availability of functional groups. Furthermore, denser and relatively higher positively charged surface could be the main reasons for higher rejection of membrane composed of 0.05wt% STTP towards copper ions in comparison with the other membranes. Furthermore, the presence of SO 4 2- ions in the CuSO4 solution slightly changed the positive charge of the membrane surface, resulting in tangible variations in rejection. According to the Donnan exclusion theory, relative increase of the negative charge of the surface in the presence of the highest concentration of STTP caused less NaCl and CuSO4 rejection compared to the other STPP modified membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号