首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2570篇
  免费   68篇
  国内免费   8篇
电工技术   33篇
综合类   10篇
化学工业   535篇
金属工艺   77篇
机械仪表   54篇
建筑科学   49篇
能源动力   92篇
轻工业   185篇
水利工程   4篇
石油天然气   4篇
无线电   445篇
一般工业技术   447篇
冶金工业   298篇
原子能技术   16篇
自动化技术   397篇
  2023年   16篇
  2022年   61篇
  2021年   64篇
  2020年   26篇
  2019年   29篇
  2018年   39篇
  2017年   32篇
  2016年   51篇
  2015年   59篇
  2014年   84篇
  2013年   184篇
  2012年   129篇
  2011年   155篇
  2010年   148篇
  2009年   171篇
  2008年   140篇
  2007年   145篇
  2006年   103篇
  2005年   77篇
  2004年   82篇
  2003年   59篇
  2002年   71篇
  2001年   48篇
  2000年   44篇
  1999年   39篇
  1998年   123篇
  1997年   69篇
  1996年   60篇
  1995年   33篇
  1994年   37篇
  1993年   26篇
  1992年   25篇
  1991年   30篇
  1990年   20篇
  1989年   18篇
  1988年   10篇
  1987年   7篇
  1986年   11篇
  1985年   13篇
  1984年   17篇
  1983年   7篇
  1982年   11篇
  1981年   11篇
  1980年   9篇
  1979年   8篇
  1978年   5篇
  1977年   7篇
  1976年   6篇
  1973年   5篇
  1971年   4篇
排序方式: 共有2646条查询结果,搜索用时 15 毫秒
1.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
2.
3.
4.
5.
Hsiehchen  David  Espinoza  Magdalena  Hsieh  Antony 《Scientometrics》2018,117(1):391-407
Scientometrics - The expanding presence of multinational research teams highlights the importance of characterizing the outcomes of international collaboration. Herein, we characterize the...  相似文献   
6.
A novel circuit topology for low-phase-noise voltage controlled oscillators (VCOs) is presented in this letter. By employing a PMOS cross-coupled pair with a capacitive feedback, superior circuit performance can be achieved especially at higher frequencies. Based on the proposed architecture, a prototype VCO implemented in a 0.18-/spl mu/m CMOS process is demonstrated for K-band applications. From the measurement results, the VCO exhibits a 510-MHz frequency tuning range at 20GHz. The output power and the phase noise at 1-MHz offset are -3dBm and -111dBc/Hz, respectively. The fabricated circuit consumes a dc power of 32mW from a 1.8-V supply voltage.  相似文献   
7.
Electronic components are constantly under stress due to factors such as signal density, temperature, humidity, and high current and voltage. Relatively little research has emphasized stress-level prediction under voltage stress. The purpose of this paper was to develop an electronic thermal profile model for stress-level prediction utilizing neural network (NN) and statistical approaches, such as multivariate regression models. Electronic components were removed from boards, subjected to different levels of stress, then replaced. An infrared camera was then used to capture information about component temperature changes over time under normal operating and stress conditions. Statistical analysis of the captured images suggests a strong correlation between thermal profiles and voltage stress levels. Artificial neural network (ANN) and statistical approaches were used to model temperature change profiles for components that had been stressed at different levels, and their predictive ability was compared. Separate data sets were used for model development and model verification. ANN prediction rates were around 70%, compared to 30% for the statistical approach. Experiments were also conducted to evaluate the robustness of the ANN model to the presence of noise in the data. Results suggested that the ANN model was able to accommodate the presence of noise. Various backpropagation (BP) learning algorithms were also evaluated and yielded similar average error rates. A 3-2-1 ANN topology performed better than 3-3-1 or 3-2-2-1 topologies, perhaps because the 3-2-1 topology has a higher data sample to nodes ratio than the other topologies.  相似文献   
8.
Using AuGeNiCr multilayered metals as the wafer bonding medium, long-wavelength GaInAsP/InP vertical cavity surface emitting lasers employing Al-oxide/Si as the upper and lower distributed Bragg reflectors were fabricated on Si substrate with the bonding interface formed outside the vertical cavity surface emitting laser cavity. Laser emission at 1.545 μm was measured under pulsed operations near room temperature. The low-temperature metallic bonding process demonstrates a great potential in device fabrication  相似文献   
9.
Highly efficient orange and green emission from single‐layered solid‐state light‐emitting electrochemical cells based on cationic transition‐metal complexes [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 (where ppy is 2‐phenylpyridine, dFppy is 2‐(2,4‐difluorophenyl)pyridine, and sb is 4,5‐diaza‐9,9′‐spirobifluorene) is reported. Photoluminescence measurements show highly retained quantum yields for [Ir(ppy)2sb]PF6 and [Ir(dFppy)2 sb]PF6 in neat films (compared with quantum yields of these complexes dispersed in m‐bis(N‐carbazolyl)benzene films). The spiroconfigured sb ligands effectively enhance the steric hindrance of the complexes and reduce the self‐quenching effect. The devices that use single‐layered neat films of [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 achieve high peak external quantum efficiencies and power efficiencies of 7.1 % and 22.6 lm W–1) at 2.5 V, and 7.1 % and 26.2 lm W–1 at 2.8 V, respectively. These efficiencies are among the highest reported for solid‐state light‐emitting electrochemical cells, and indicate that cationic transition‐metal complexes containing ligands with good steric hindrance are excellent candidates for highly efficient solid‐state electrochemical cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号