首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210315篇
  免费   27929篇
  国内免费   7875篇
电工技术   10528篇
技术理论   17篇
综合类   12063篇
化学工业   44643篇
金属工艺   9618篇
机械仪表   11352篇
建筑科学   15590篇
矿业工程   4718篇
能源动力   5687篇
轻工业   20050篇
水利工程   3530篇
石油天然气   9133篇
武器工业   1337篇
无线电   27541篇
一般工业技术   31195篇
冶金工业   8682篇
原子能技术   2108篇
自动化技术   28327篇
  2024年   608篇
  2023年   2554篇
  2022年   4432篇
  2021年   6700篇
  2020年   6221篇
  2019年   6924篇
  2018年   7540篇
  2017年   8389篇
  2016年   8324篇
  2015年   10073篇
  2014年   11750篇
  2013年   14976篇
  2012年   13815篇
  2011年   14350篇
  2010年   13351篇
  2009年   13009篇
  2008年   12525篇
  2007年   11721篇
  2006年   11491篇
  2005年   9953篇
  2004年   7374篇
  2003年   6474篇
  2002年   6134篇
  2001年   5609篇
  2000年   5241篇
  1999年   4995篇
  1998年   3829篇
  1997年   3325篇
  1996年   2930篇
  1995年   2482篇
  1994年   1946篇
  1993年   1523篇
  1992年   1238篇
  1991年   938篇
  1990年   731篇
  1989年   627篇
  1988年   477篇
  1987年   346篇
  1986年   262篇
  1985年   198篇
  1984年   124篇
  1983年   99篇
  1982年   101篇
  1981年   75篇
  1980年   66篇
  1979年   44篇
  1978年   30篇
  1977年   30篇
  1976年   48篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
2.
3.
In this work, the composition-dependent point defect types and formation energies of RE2Hf2O7 (RE = La, Ce, Pr, Nd, Pm, Sm, Eu and Gd) as well as the oxygen diffusion behavior are systematically investigated by first-principles calculations. The possible defect reactions and dominant defect complexes under stoichiometric and non-stoichiometric conditions are revealed. It is found that O Frenkel pairs are the predominant defect in stoichiometric pyrochlore hafnates. Hf-RE cation anti-site defects, accompanied by RE vacancies and/or oxygen interstitials, are stable in the non-stoichiometric case of HfO2 excess. On the other hand, RE-Hf anti-site defects together with oxygen vacancies and/or RE interstitials are preferable in the case of RE2O3 excess. The energy barriers for the migration along the VO48f - VO48f pathway of pyrochlore hafnates were calculated to be between 0.81 eV and 0.89 eV. Based on these results, a defect engineering strategy is proposed and the pyrochlore hafnates investigated here are predicted to exhibit potential oxygen ionic conductivity.  相似文献   
4.
Wang  Chen  Bao  Chun-Hui  Wu  Wan-Yu  Hsu  Chia-Hsun  Zhao  Ming-Jie  Zhang  Xiao-Ying  Lien  Shui-Yang  Zhu  Wen-Zhang 《Journal of Materials Science》2022,57(26):12341-12355
Journal of Materials Science - Molybdenum oxide (MoOx) films had been grown by using plasma-enhanced atomic layer deposition (PEALD) with Mo(CO)6 precursor and O2 plasma reactant in a substrate...  相似文献   
5.
Pathogens pose a serious challenge to environmental sanitation and a threat to public health.The frequent use of chemicals for sterilization in recent years has not only caused secondary damage to the environment but also increased pathogen resistance to drugs,which further threatens public health.To address this issue,the use of non-chemical antibacterial means has become a new trend for environmental disinfection.In this study,we developed red phosphorus nanoparticles(RPNPs),a safe and degradable photosensitive material with good photocatalytic and photothermal properties.The red phosphorus nanoparticles were prepared using a template method and ultrasonication.Under the irradiation of simulated sunlight for 20 min,the RPNPs exhibited an efficiency of 99.98%in killing Staphylococcus aureus due to their excellent photocatalytic and photothermal abilities.Transmission electron microscopy and ultraviolet–visible spectroscopy revealed that the RPNPs exhibited degradability within eight weeks.Both the RPNPs and their degradation products were nontoxic to fibroblast cells.Therefore,such RPNPs are expected to be used as a new type of low-cost,efficient,degradable,biocompatible,and eco-friendly photosensitive material for environmental disinfection.  相似文献   
6.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
7.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
8.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
9.
氢脆具有很强的微观组织敏感性,威胁着各类高强结构材料的安全服役.采用激光-电弧复合焊工艺对BS960E型高强钢进行焊接,并对接头在原位电化学充氢的条件下进行慢应变速率(10-5s-1)拉伸试验,结合微观组织和断裂特征进行分析并对接头的氢脆行为进行研究.结果 表明,焊接热循环所形成的富马氏体中的细晶区可以使接头表现出一定的氢脆敏感性,马氏体较大的氢扩散系数和较低的氢溶解度以及氢在晶界上的快速扩散是引起接头对氢脆敏感的主要原因,通过控制焊接工艺参数可抑制焊接热循环所引起的马氏体转变量,能够降低BS960E型高强钢激光-电弧复合焊接头的氢脆敏感性.  相似文献   
10.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号