首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学工业   6篇
金属工艺   1篇
能源动力   3篇
一般工业技术   2篇
自动化技术   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2017年   3篇
  2016年   1篇
  2014年   1篇
  2004年   1篇
  2002年   2篇
  1991年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The capacity of microfluidic technology to fabricate monodisperse emulsion droplets is well established. Parallelisation of droplet production is a prerequisite for using such an approach for making high-quality materials for either fundamental or industrial applications where product quantity matters. Here, we investigate the emulsification efficiency of parallelised drop generators based on a flow-focusing geometry when incorporating the role of partial wetting in order to make emulsion droplets with a diameter below 10 μm. Confinement intrinsically encountered in microsystems intensifies the role played by interfaces between liquids and solids. We thus take advantage of partial wetting to enhance the maximum confinement accessible due to liquid flow focusing. We compare the performances brought by partial wetting to more established routes such as step emulsification. We show that the step configuration and the partial wetting regime are both well suited for being parallelised and thus open the way to the production of fine and calibrated emulsions for further applications. Finally, this new route of emulsification that exploits partial wetting between the fluids and the channel walls opens possibilities to the formation of substantially smaller droplets, as required in many fields of application.  相似文献   
2.
The encapsulation of phase change materials (PCMs) as thermal energy storage materials is a big issue. PCM is usually encapsulated to avoid spillage, flammability and its reaction with the surrounding environment to improve its application. In the last decade, various methods have been employed and all kinds of microencapsulated PCM are produced. In this paper, we present a facile route to produce an encapsulated PCM with an organic and inorganic shell. The encapsulated phase change material (PCM) was prepared using a coaxial micro-fluidic system combined with an ionic cross-linking process. The alginate was used as the basic shell and a range of capsules was obtained by modifying the original shell using two inorganic components such as sodium carbonate and sodium silicate. Various samples, each with a different surrounding layer, were prepared by combining alginate calcium (Alg–Ca) as an organic shell with an inorganic component such as alginate calcium carbonate (Alg–CaCO3) and alginate calcium silicate (Alg–CaSiO3). In these experimental works, we have investigated the compatibility and the stability of capsules modified with the inorganic component. The scanning electron microscopy (SEM) technique and optical microscopy were utilized to study the capsule morphology. The chemical composition of the shell was evaluated by Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetry analysis and SEM coupled with the EDX analysis, and the capsule stability was estimated under an accelerated thermal cycling.  相似文献   
3.
This study describes the synthesis and characterization of Cu-doped ZnO nanorods (NRs) by an electrochemical method in the presence of two different Cu precursor (Cu+2 and Cu+) in order to improve photocurrent generation. Analyses of the resulting materials by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis and electrochemical photocurrent (ECP) spectroscopy confirm the formation of well-aligned ZnO Würtzite nanostructures in the form of hexagonal rods. For both doping source with a concentration of up to 0.5%, the following changes were observed: a distortion of the ZnO morphology, an increase in transmittance to 96% for ZnO doped with Cu+2, and a reduction of the energy gap from 3.36 eV to 3.06 and 3.02 eV for ZnO doped with Cu+2 and Cu+, respectively. From photoelectrochemical tests, the photo-current density was improved up to 0.05 mA cm-2 in the presence of Cu doping, which is twelve times superior to that of undoped ZnO nanorods, which means that the incorporation of Cu+2 or Cu + significantly improves the separation efficiency of photogenerated electron-hole pairs. These results can be considered promising for optoelectronic and photocatalysis applications.  相似文献   
4.

With the increasing growth of the chemical and process industries, it is necessary to ensure the safe operation of their complex and often hazardous installations, given their proximity to residential areas. Several techniques, such as fault tree analysis (FTA), bow-tie analysis (BTA), and Bayesian belief networks (BBNs), have been developed for adequate probabilistic risk assessment and management. The current work is aimed at performing a brief statistical review of the use of Bayesian networks in the chemical and process industry within the last decade. The review reveals that Bayesian networks have been used extensively in various forms of safety and risk assessment. This trend is attributable to the complexity of the installations found in this industry and the ability of BBN to intuitively represent these complexities, handle uncertainties, and update event probabilities. The paper is concluded with an illustrative example of the use of BBN to investigate the effectiveness of the safety barriers of a gas facility.

  相似文献   
5.
In this paper, an integrated process using photovoltaic power to harvest microalgae by electro-flocculation (EF) and hydrogen recovery is presented. It is mainly favorable in regions with high solar radiation. The electro-flocculation efficiency (EFE) of Chlorella pyrenoidosa microalgae was investigated using various types of electrodes (aluminum, iron, zinc, copper and a non-sacrificial electrode of carbon). The best results regarding the EFE, and biomass contamination were achieved with aluminum and carbon electrodes where the electrical energy demand of the process for harvesting 1 kg of algae biomass was 0.28 and 0.34 kWh, respectively, while the energy yield of harvested hydrogen was 0.052 and 0.005 kWh kg?1, respectively. The highest harvesting efficiency of 95.83 ± 0.87% was obtained with the aluminum electrode.The experimental hydrogen yields obtained were comparable with those calculated from theory. With a low net energy demand, microalgae EF may be a useful and low-cost technology.  相似文献   
6.
Iranian Polymer Journal - The article listed above was initially published with typo error in first author name.  相似文献   
7.
This paper presents an analysis of natural circulation of a compact thermosyphon solar domestic hot water (SDHW) system produced and commercialised locally in Algeria. Calculations and measurements were performed on the mass flow rate, temperature rise fluid and absorber temperatures inside the thermosyphon of parallel tube design. Comparison between experimental and theoretical results is presented.  相似文献   
8.
Experimental tests have been conducted following the recommended CSTG guidelines in outdoor conditions, in order to evaluate a thermosiphon Solar Domestic Hot Water (SDHW) system. This thermosiphonic solar system tested represents a good sample of various characteristics for SDHW systems manufactured by the Algerian industry. Heating of water utilising solar energy is a well-known and established technology in many parts of Algeria. With increasing number of solar heating systems on the market, a need was felt to adopt a standard testing and rating procedure for them. The introduction of test procedures should provide an equitable basis for competition amongst manufacturers and an essential criterion for design and selection of the equipment.  相似文献   
9.
Solvent‐free acetylation of microfibrillated cellulose was carried out in order to improve their hydrophobicity. All the samples were filled with low‐density polyethylene. The morphology, mechanical properties, and water uptake of the ensuing composites were investigated. An excessive reaction time leads to degradation of the fibers, which was observed by scanning electron microscopy and fiber quality analysis. The acetylation treatment did not improve the mechanical properties of composites but extensively decreased the moisture absorption of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44933.  相似文献   
10.
The increasing attention to the environmental and health impacts of industry activities by governmental regulation and by the growing awareness in society is forcing manufacturers to reduce the use of lubricants.In the machining of aeronautical materials, classified as difficult-to-machine materials, the consumption of cooling lubricant during the machining operations is very important. The associated costs of coolant acquisition, use, disposal and washing the machined components are significant, up to four times the cost of consumable tooling used in the cutting operations. To reduce the costs of production and to make the processes environmentally safe, the goal of the aeronautical manufacturers is to move toward dry cutting by eliminating or minimising cutting fluids. This goal can be achieved by a clear understanding of the cutting fluid function in machining operations, in particular in high speed cutting, and by the development and the use of new materials for tools and coatings. High speed cutting is another important aspect of advanced manufacturing technology introduced to achieve high productivity and to save machining cost. The combination of high speed cutting and dry cutting for difficult-to-cut aerospace materials is the growing challenge to deal with the economic, environmental and health aspects of machining.In this paper, attention is focussed on Inconel 718 and recent work and advances concerning machining of this material are presented. In addition, some solutions to reduce the use of coolants are explored, and different coating techniques to enable a move towards dry machining are examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号