首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
  国内免费   1篇
电工技术   1篇
化学工业   1篇
金属工艺   2篇
机械仪表   5篇
一般工业技术   2篇
  2024年   1篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有11条查询结果,搜索用时 11 毫秒
1.
实现对井下工况的预测是及时掌握抽油井生产状态的有效方法,对提高油井生产效率和降低维护成本具有十分重要的意义。采用混沌理论实现抽油井井下工况的短期预测,首先将所提取的示功图的不变曲线矩特征向量作为预测变量,在证明其数据序列具有混沌特性后,由核极限学习机(kernel extreme learning machine,ELM)建立混沌时间序列预测模型,对其中的几个不确定参数采用改进的果蝇优化算法(improved fruit fly optimizationalgorithm,IFOA)进行优化选取,IFOA采用全局群体多样进化和局部个体随机变异的策略,最后,对模型所预测的结果进行物元分析(matter-element analysis,MEA),诊断其属于哪种故障类型。由某油田作业区的两口生产井进行实例验证,结果表明所提出的IFOA-KELM-MEA预测模型是合理有效的。  相似文献   
2.
低温环境下MEMS微构件的动态特性及测试系统   总被引:1,自引:1,他引:0  
研究了微机电系统(MEMS)微构件的谐振频率等动态特性在低温环境下的变化规律,从理论上分析了改变环境温度对微悬臂梁谐振频率的影响,并对低温环境下微构件的动态特性测试技术进行了研究。研制了低温环境下MEMS动态特性测试系统,采用半导体冷阱实现低温环境,利用压电陶瓷作为底座激励装置的驱动源,通过底座的冲击激励,使微悬臂梁处于自由衰减振动状态,使用激光多普勒测振仪对微悬臂梁的振动响应进行检测,从而获得微悬臂梁的谐振频率。利用研制的测试系统,在-50℃~室温的环境下对单晶硅微悬臂的谐振频率进行了测试,结果表明,随着温度的降低,微悬臂梁的谐振频率略有增大,其谐振频率的温度变化率约为-0.263 Hz/K,与理论分析的结果基本一致。该测试装置能够有效地完成在-50℃~室温环境下微构件的动态特性测试。  相似文献   
3.
为了获得T型单晶硅微悬臂梁的固有频率温度系数,首先从理论上分析了T型微悬臂梁的固有频率随温度的变化规律,并建立了其固有频率的温度系数模型。随后搭建了带有高温环境加载功能的MEMS微结构动态特性测试系统,采用OFV534激光多普勒测振仪获取微结构的振动响应,采用基于压电陶瓷的底座激励方法实现对微结构的激励,在激励装置中采用了一个可动机构,解决了压电陶瓷在高温环境下使用的难题。最后,使用带有高温环境加载功能的MEMS微结构动态特性测试系统,测试了一种典型T型单晶硅微结构的动态特性,测试温度范围为室温~300℃,得到硅微悬臂梁的固有频率温度系数约为-2.71×10-5/℃,与理论分析的结果具有很好的一致性。  相似文献   
4.
基于激波的MEMS微结构底座冲击激励方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了能够在较高的温度环境中测试MEMS微结构的机械模态参数,本文提出了一种以高压电容空气放电为手段,以激波冲击为特征的底座激励方法。阐述了基于激波的底座冲击方法的原理和具体实现方式,并分析了放电电容、回路电阻、回路电感等参数与激振装置激励能力的关系。设计并研制了可应用在室温环境中的MEMS微结构动态测试装置,并在此基础上研制了高温环境微结构动态测试系统,系统中使用基于激波的底座冲击激励装置对微结构进行激励,采用激光多普勒测振仪获取微结构的振动响应信号。分别测试了两种尺寸的单晶硅微悬臂梁在室温~500℃温度环境下的动态特性,结果表明微悬梁的谐振频率随温度的升高而减小,并呈近似线性关系,与其他研究人员的研究结果有很好的一致性,验证了基于激波的底座冲击激励方法的可行性。  相似文献   
5.
目的研究磨削参数对电化学加工氧化膜去除质量的影响规律,以及各参数对氧化膜去除质量影响的稳定性和敏感性。方法在试件表面形成均匀一致,无缺陷电化学加工氧化膜的前提下,借助自主搭建的机械磨削实验平台,分别研究磨粒尺寸、工件速度、磨削压强和加工时间对氧化膜去除质量的影响,使用精密电子天平和扫描电子显微镜对实验前后的试件进行测量,结合稳定性与敏感性分析理论对实验结果进行分析。结果不同的加工参数对氧化膜去除程度的影响不尽相同,氧化膜既存在不完全去除的现象,也存在完全去除的现象。扫描电子显微镜结果也显示,不同尺寸的磨粒对氧化膜的破坏程度不同,其表面氧化膜的沟槽深浅不同。结论受氧化膜硬度低、容易去除和基体金属硬度高、不容易去除的影响,氧化膜去除质量随着工件速度和加工时间的增加呈现三次曲线的规律增加,随磨削压强和磨粒尺寸的增大呈线性增加趋势。磨削参数对氧化膜去除质量影响的稳定性与敏感性不同,而且在电化学机械加工生产应用中不改变磨削工具,所以在磨削参数相对值较低的区间,其对去除质量影响的稳定性由大到小(敏感性由小到大)为:磨粒尺寸、加工时间、磨削压强、工件速度。在磨削参数相对值较高的区间,稳定性由大到小(敏感性由小到大)为:磨粒尺寸、磨削压强、工件速度、加工时间。加工中优先选择稳定性高(敏感性低)的参数作为调整电化学机械加工效果的主要因素,可在提升经济性的同时,提高加工精度。  相似文献   
6.
高温环境下微悬臂梁谐振频率温度特性及测试技术研究   总被引:1,自引:0,他引:1  
对单晶硅微悬臂梁在高温环境下的动态特性进行了理论分析,研制了高温环境下的MEMS动态特性测试系统,采用压电陶瓷作为底座激励装置的驱动源,设计了一个可动的机构,解决了压电陶瓷在高温环境下使用的难题;通过激励装置进行冲击激励,使用激光多普勒测振仪对微悬臂梁的振动响应进行检测,对微悬臂梁受冲击后的时域信号进行分析,获得微悬臂梁的谐振频率。利用研制的高温环境下MEMS动态特性测试系统,在室温至300℃的温度环境下对单晶硅微悬臂梁的动态特性进行了测试,结果表明随着温度的升高其谐振频率会有轻微的减小,验证了理论分析的结果。  相似文献   
7.
基于虚拟仪器的高载条件下MEMS动态测试系统   总被引:9,自引:3,他引:6  
利用虚拟仪器技术开发了高载条件下MEMS动态测试系统,实现了高载条件的监测与MEMS动态测试的自动控制.设计了高速离心转盘提供高载环境,选用压电陶瓷作为动态测试的激励装置,应用高速导电滑环传输数据.测试中的高频响应信号按DMA方式采集,此过程占用系统DMA资源,与监测相互冲突.提出上位机通过TCP/IP协议控制下位机进行高速采集的方法,解决了冲突问题.本文对系统的总体设计、软件技术、系统功能等方面做出详细阐述.  相似文献   
8.
为了研究微悬臂结构弯曲振动模态频率的温度特性,首先针对各向异性材料的等截面矩形微悬臂结构建立了其各阶 模态频率温度系数的理论模型;然后搭建了包括激光测振单元、空耦超声激励单元和温度控制单元的非接触式微结构动态特 性测试系统;最后利用所搭建的测试系统分别对等截面矩形单晶硅微悬臂梁在室温~300℃时的动态特性进行了测试,获得 了微悬臂梁前三阶弯曲振动模态频率随温度的变化规律和频率温度系数。研究结果表明,单晶硅微悬臂梁前三阶弯曲振动 模态频率随着温度的升高而呈近似线性的减小,并且微悬臂梁前三阶弯曲振动模态具有几乎相同的频率温度系数,其中一阶 模态频率的温度系数为-2.18×10-5/℃,二阶模态频率的温度系数为-1.91×10-5/℃,三阶模态频率的温度系数为 -2.01×10-5/℃,前三阶模态频率温度系数的测试结果与理论模型预测值的偏差分别3×10-7/℃,3×10-6/℃和2× 10-6/℃。  相似文献   
9.
目的在提高轴承滚子表面质量的基础上获得具有一定凸度的表面轮廓。方法将自主搭建的电化学机械加工(electrochemical mechanical machining,ECMM)平台用于轴承滚子的表面加工,采用中性NaNO_3水溶液作为电解液,设计了L_9(3~4)的正交实验,使用表面粗糙度测量仪对实验前后轴承滚子的表面粗糙度Ra、轮廓最大高度Rz和轮廓凸度进行测量和分析,并利用实验数据分析影响表面粗糙度和凸度的各因素和水平。结果经过ECMM加工后,轴承滚子表面粗糙度Ra值由加工前的0.0874μm降低至0.0247μm,轮廓最大高度Rz值由加工前的0.772μm降低至0.238μm,轮廓凸度由原来的平直表面增加到最大值43.3μm。对于表面粗糙度,电流密度的影响最显著,各因素最佳水平为:电流密度5 A/cm~2,机械作用压力0.20 MPa,运动速度0.24 m/s,磨具号数1000#。对轮廓凸度,电流密度的影响最显著,各因素最佳水平为:电流密度5 A/cm~2,运动速度0.21 m/s,磨具号数2000#,机械作用压力0.20 MPa。结论 ECMM加工方法适用于轴承滚子的加工,可在一次加工中同时提高滚子的表面质量并获得一定凸度的表面轮廓。加工参数对表面质量和凸度影响最大的因素是加工电流密度,优先选择较大加工电流密度的同时要合理选择其他加工参数。  相似文献   
10.
基于放电激励方法建立了高温环境下MEMS微构件动态特性测试系统,该系统主要由激励装置、激光多普勒测振仪、微构件温度控制系统组成.激励装置利用尖端放电产生的激波激励微构件,通过进给机构调节电极间距以改变激励能量.激励底座是用高温胶粘接而构成的多层结构,包括微构件安装板、十字载台、陶瓷绝缘片和板电极.微构件胶粘在底座上,其振动响应信号由多普勒测振仪测量,计算机对测量数据频谱分析后得到谐振频率.编写了基于LabVIEW的微构件温度控制软件,控制测试时温度.利用该测试系统,测试了微构件在室温~500℃环境下的谐振频率,得到了谐振频率随温度变化规律.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号