首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
金属工艺   2篇
  2024年   1篇
  2023年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
采用Gleeble-3800热模拟机对TB15钛合金进行等温恒应变速率热压缩试验,研究其在变形温度为810~930℃、应变速率为0.001~10s-1和高度压下量为60%条件下的热变形行为;建立了物理、支持向量回归(SVR)和响应面三种本构关系模型来预测TB15钛合金的流动应力,同时对比了三种本构模型的预测精度。结果表明:TB15钛合金的流动应力随应变速率的降低和变形温度的升高而减小,峰值应力的变化对应变速率的敏感性更高;物理本构模型、SVR本构模型和响应面本构模型相关系数R均大于0.98,但是响应面本构模型的R值达到了0.993,而且响应面本构模型的相对误差在±5%范围内的预测值频率达到了67.9%,大于物理本构模型的58.6%。同时经过方差分析得到所构建的响应面本构模型的显著性检验值P<0.0001,表明响应面本构模型预测的流动应力与变形温度、应变速率和应变之间的回归关系显著,比物理本构模型和SVR本构模型有更高的精度,能够更好的预测TB15钛合金的流动应力。  相似文献   
2.
采用Gleeble-3500热模拟试验机对TB15钛合金在变形温度810~930℃、应变速率0.001~10 s-1范围进行等温热压缩实验,基于实验数据分析了不同应变速率下TB15钛合金的流动软化行为,并结合微观组织和变形激活能Q研究了应变速率对其软化机制的影响。结果表明:合金的流动软化程度在不同应变速率范围内的变化规律不同;微观组织和变形热效应是造成流动软化的主要原因,变形热效应在高应变速率(ε≥0.1 s-1)范围内的影响更为显著;通过微观组织分析可知,动态回复(DRV)在热变形过程中占主导地位,低应变速率(ε <0.1 s-1)下的主要软化机制为DRV和动态再结晶(DRX),随着应变速率的升高,DRX程度降低,且应力集中作用加强,变形带在高应变速率下被激活,这在一定程度上有利于晶粒细化。低应变速率和高应变速率的变形激活能分别为213.8 kJ/mol和255.3 kJ/mol,低应变速率下的微观组织软化效应更加明显。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号