首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
综合类   2篇
金属工艺   4篇
机械仪表   2篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
为了研究利用脉冲激光沉积法制备于SrTiO_3衬底上的Au/BiFeO_3/SrRuO_3结构的阻变效应,实验通过测量样品的I-V特性曲线来表征样品的阻态变化.由于BiFeO_3与Au、SrRuO_3功函数的不同在Au/BiFeO_3、BiFeO_3/SrRuO_3两个接触界面形成稳定的肖特基接触,通过改变外部电压控制陷阱能级填充的程度可以改变肖特基势垒高度,从而在施加电压小于矫顽电压时可以形成稳定的高低阻变化,表现出最大可达103高低阻电流比的I-V特性曲线.对I-V特性曲线进行不同导电机制的拟合表明:小于矫顽电压下空间电荷限制电流起到了主导作用,陷阱的填充与脱陷是主要的阻变机制.  相似文献   
2.
正高温合金在很多领域都有着极其重要的应用,它们对新型和可再生能源技术也至关重要,如生物质"绿色"能源、生物质气化、碳捕获和储存生物能源、聚光太阳能和固体氧化物燃料电池等。它们在许多其他重要技术领域如喷气发动机、石油化学和材料加工领域也发挥着极大的作用。在高温下,合金会与其环境剧烈反应,导致材料因腐蚀而失效。为了防止腐蚀,通常会在高温合金表面镀上氧化铝或氧化铬保护层。这种保护层对防止金  相似文献   
3.
以一种多路阀主阀为研究对象,采用FLUENT进行内部流场仿真,开发了基于MATLAB/GUI的阀口过流面积计算平台。两者结合分析主阀过流面积、流量特性、流量系数以及稳态液动力随阀芯位移的变化,为主阀流量、液动力等性能预测以及减小阀芯驱动力提供一定的依据。  相似文献   
4.
0 引言 能源不仅是国家经济和社会发展的命脉,也是军事行动不可或缺的物质基础.在全球化石能源日益枯竭、能源危机不断升级的大背景下,生物能源逐渐成为世界主要国家军事能源转型的重要方向.  相似文献   
5.
表面粗糙度和表面自由能是影响材料超疏水特性的两个主要因素。 为了获得同时具有微纳分级结构和低表面能的超疏水金属镀层,在低共熔溶剂中采用先构筑微米尺度结构,再构筑低表面能纳米尺度结构的两步电沉积策略。 利用 SEM、EDS 和 FTIR 观察不同沉积时间(t = 0、0. 5、1 和 2 min)下沉积样品(分别命名为 Zn、Zn / Zn myristate-0. 5、Zn / Zn myristate-1 和 Zn / Zn myristate-2)的表面形貌和成分。 利用接触角测量仪和电化学工作站分析样品的超疏水性、耐腐蚀性、自清洁性及化学稳定性。 结果表明,Zn / Zn myristate 镀层表面呈现由微米尺度的纯锌多面体和纳米尺度的十四酸锌薄片构筑而成的微纳分级结构;随着沉积时间增加,十四酸锌纳米薄片逐渐长大、交联并形成网状结构。 得益于其特殊的表面微纳结构和表面组成,Zn / Zn myristate-2 镀层表现出优异的超疏水(CA = 156. 7±1. 5°、SA = 2. 5±0. 3°)、耐腐蚀和自清洁特性。 稳定性测试表明,Zn / Zn myristate-2 镀层在空气(12 周)和 3. 5 wt. %的 NaCl 溶液(6 d)中表现出优异的超疏水稳定性。  相似文献   
6.
正一、智能材料的特点及分类智能材料(Intelligent/Smart Material)是自20世纪90年代开始迅速发展起来的一类新型功能材料,其集仿生、纳米技术及新材料科学于一身,是21世纪最具有发展潜力的前瞻性研究领域之一。与传统材料不同,智能材料不仅仅以单一的材料形式存在,而是以某一智能化体系方式存在。由此给出智能材料的定义是:由多种材料组元通过有机紧密复合或严格的  相似文献   
7.
目的 实现电沉积镀层表面微纳分级结构的简单构筑,赋予其优异的超疏水特性。方法 以氯化胆碱-尿素低共熔溶剂为溶剂,加入一定比例的氯化镍和硬脂酸溶解后得到电解液,通过调节电沉积时间得到一系列不同形貌的硬脂酸镍镀层。利用SEM、FTIR和XPS等表征技术研究了沉积时间对所制备镀层形貌和组成的影响,利用接触角测量仪探究了不同形貌硬脂酸镍的超疏水性和化学稳定性,利用电化学工作站考察了超疏水镀层的耐腐蚀性。结果 在低共熔溶剂中通过一步电沉积法得到不同形貌结构的硬脂酸镍镀层,其表面形貌与沉积时间密切相关。沉积初期呈现纳米片状结构,随着沉积进行,硬脂酸镍纳米片逐渐堆积、交叉,最终形成花状微纳分级结构。得益于其独特的微纳分级结构和自身低表面能特性,花状硬脂酸镍镀层不仅具有优异的超疏水性(θWCA=(157.3±1.9)°,θSA=(3.6±1.1)°)和自清洁特性,还对强酸、强碱以及盐溶液表现出优异的化学稳定性。与纳米片状和零散花状的硬脂酸镍相比,花状微纳分级结构的硬脂酸镍的耐腐蚀性(Jcorr=1.75×10−6 A/cm2)分别提高了20倍和7倍。结论 以低共熔溶剂为电解液,通过控制沉积时间可实现镀层表面微纳分级结构的调控与构筑,进而获得性能优异的超疏水镀层。  相似文献   
8.
介绍一种全新的基于AMESim仿真平台、MATLAB计算软件、FLUENT流场分析软件对一种典型液压阀进行仿真的仿真方法,并通过实验验证了该仿真方法的正确性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号