首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
金属工艺   2篇
  2023年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
针对18个单晶高温合金叶片高效制备过程中温度场不均匀而导致的杂晶缺陷问题,设计了3种不同的单晶叶片模组结构,采用ProCast软件和CAFE模块对第2代单晶高温合金DD6不同模组结构在高速凝固工艺下的温度场和晶粒组织进行模拟研究,分析了不同模组结构下叶片的温度场演化和抽拉速率对杂晶的影响。结果表明,单层模组由于中柱的保温作用较小,导致叶片近中柱侧的散热效率高于近炉壁侧,凝固过程固液界面弯曲严重,凝固过冷大,杂晶形成倾向大;通过对单层模组添加套筒,以加强保温作用,可有效改善温度场,减小固液界面弯曲程度,避免杂晶形核;而双层叠加模组温度场分布均匀,凝固过冷小,杂晶形成倾向小。套筒模组和双层叠加模组在抽拉速率小于100μm/s时均无杂晶形成,但双层叠加模组将模组直径缩小为其余2种模组结构的一半,降低了对炉体型腔尺寸的要求,有望实现单晶叶片的高效制备。  相似文献   
2.
在室温至1000℃的范围内,研究温度对一种低层错能镍基单晶高温合金压缩行为和变形组织的影响。研究结果表明,压缩行为和变形组织均表现出温度相关性。室温下该合金具有较高屈服强度,600℃时屈服强度有所下降;随后,随着温度的升高,屈服强度持续增加,并在800℃时达到最大值;在800℃以上时,屈服强度迅速降低。通过透射电子显微镜观察揭示合金变形机制。位错缠结和位错对塞积是室温下屈服强度较高的主要原因。在600℃时,变形机制从反相畴界切割向堆垛层错切割转变,这导致屈服强度略有下降。在800℃时,变形机制以堆垛层错切割为主,而Lomer-Cottrell锁和不同方向堆垛层错之间的反应导致最大的屈服强度。在900℃及以上时,虽然仍存在一些层错,但主要变形机制为位错绕过机制。最后,讨论变形机制和压缩行为的温度依赖性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号