首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
电工技术   1篇
化学工业   1篇
金属工艺   3篇
矿业工程   1篇
轻工业   1篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
2.
采用ProCAST软件对非晶合金Zr_(48)Cu_(36)Al_8Ag_8板材的水平连铸过程进行温度场模拟,基于自主研发的水平连铸设备,并采用正交试验法分析了不同工艺参数对凝固过程各因素的影响。结果表明,影响凝固前沿形状的因素顺序为:拉坯速度浇注温度拉坯起始位置;影响凝固前沿平衡状态及板坯中非晶合金含量的因素顺序为:拉坯速度拉坯起始位置浇注温度。最优工艺参数组合是拉坯速度为4mm/s,浇注温度为1 080℃,拉坯起始位置为结晶器入口14mm处。  相似文献   
3.
利用铜模喷铸法和等温退火热处理,制备具有不同晶化程度的(Cu_(47)Zr_(45)Al)8)_(98.5)Y_(1.5)块体非晶基复相材料(BMGCs),研究了其显微组织与力学性能的关系。结果表明,随着退火温度增加,(Cu_(47)Zr_(45)Al)8)_(98.5)Y_(1.5)非晶基复相材料的晶化分数(V_f)上升,相转变进程为:非晶→非晶+Cu_(10)Zr_7→非晶+Cu_(10)Zr_7+AlCu_2Zr+Al_2Zr。晶化过程中结晶相的析出强化作用能明显提高合金的显微硬度,760K退火20min后合金最大硬度(HV)可达691。合金断裂强度随退火温度升高先增加后减小。680K等温退火后合金断裂强度达到最高,为1 950MPa。断口SEM显示随着热处理温度提高,非晶基复相材料断裂模式由韧-脆混合断裂模式向解理脆性断裂模式转变。试验结果表明,可以通过控制退火温度、退火时间等参数对Cu基块体非晶基复相材料的力学性能进行调控。  相似文献   
4.
利用高温管式炉实验系统,研究了高温还原性气氛下煤焦与矿物质Fe对氨气还原NO的影响,其中煤焦包含原煤焦、脱矿煤焦和浸渍铁煤焦三种。结果表明:在均相还原中NO还原效率随着氨氮体积比(V(NH3)∶V(NO))的增加而增加;1 000℃~1 300℃温度范围内,随着温度的升高,出口NO浓度显著降低,1 400℃~1 600℃温度范围内,出口NO浓度呈现先增加后降低的趋势;原煤焦参与NH3异相还原NO反应中出口NO浓度较NH3均相还原NO反应中出口NO浓度低,这是由于原煤焦协同NH3促进NO的异相还原;相对于原煤焦而言,脱矿煤焦对NH3还原NO的促进效果更显著,并且NH3协同脱矿煤焦对NO异相还原的促进作用随着温度的升高而增强;浸渍铁煤焦对NH3还原NO的过程表现为抑制作用,并且在1 500℃下抑制作用更为明显,其原因为铁与氨基结合为含铁络合物,降低了体系用于还原NO的NH2/NH自由基浓度。  相似文献   
5.
5356铝合金熔体复合净化技术研究   总被引:1,自引:0,他引:1  
本试验采用软接触电磁连续铸造法制备5356铝合金,并通过XRF、OM、SEM-EDS和氢含量测定等分析测试方法,研究了C2Cl6和C2Cl6-TiO2复合熔体净化技术对5356铝合金氢含量的影响。研究结果表明,选用不同成分配比的除气剂:1.00 wt.%C2Cl6和0.85wt.%C2Cl6+0.55 wt.%TiO2(占炉料),均可使5356铝合金电磁连铸铸锭氢含量控制在0.15μg/g,熔体具有较高的洁净度,显微组织中未发现有害的粗大杂质相、明显气孔和其他氧化物夹杂。  相似文献   
6.
氨作为一种富氢无碳含氮燃料,与煤粉混合燃烧在有效降低煤电CO_(2)排放的同时,增加了NO的生成途径。为实现氨煤低氮燃烧,该文在氨煤混燃理论燃烧放热量固定的条件下,利用高温管式炉进行氨煤混合燃烧实验探究掺氨比(0%~10%)、温度(1000~1500℃)对氨煤共燃NO生成特性的影响。结果表明,氨的掺混能够促进NO的生成与单位质量燃料NO释放量,降低燃料N向NO的转化率。随着掺氨比升高,NO的释放量逐渐增加,在同一掺氨比工况下,随着温度的升高,NO的单位质量燃料释放量先增加后降低。掺氨比为0~2%时,燃料N到NO的转化率随温度的升高逐渐降低;掺氨比为4%~10%时,燃料N到NO的转化率随温度的升高呈先增加后降低的规律;在1200℃时,各工况下转化率达到峰值。结果可为氨煤混合燃烧N转化机理提供理论支撑。  相似文献   
7.
为了实现双碳目标,降低煤电碳排放势在必行。无碳燃料氨与煤混烧被认为是降低火电碳排放的有效途径之一。而氨作为N源,增加了氨煤混燃NOx排放量升高的可能性,因此,深入研究氨煤混燃NO生成机理对实现氨煤混燃低碳低氮燃烧十分关键。采用量子化学方法探究了当NH3以NH形式存在时氨煤混燃N的氧化机理,并采用波函数分析NH和O2在煤表面的吸附行为。计算结果表明,NH在C5表面吸附形成中间体IM1的过程为放热过程,放热量高达754.79 kJ/mol,且C原子为电子供体而失电子,NH为电子受体而得电子,促进C—N键键合。进一步探究O2以不同方式吸附时NH/煤焦/O2体系的反应机理,得出NH/煤焦/O2共燃体系首先发生NH在煤焦表面的氧化,随后煤焦表面残余氧或体系中O2将煤焦-N进一步氧化。NH/煤/O2异相体系中NH通过不同反应路径生成氧化产物NO、NO2和HNO,对应决速步能垒分别为120.67、323....  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号