首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
金属工艺   8篇
  2018年   2篇
  2017年   1篇
  2011年   1篇
  2008年   2篇
  2006年   2篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
通过改变时效温度研究热处理制度对β锻造后TC17钛合金显微组织和力学性能的影响,并根据其服役要求选择较佳的热处理制度。结果表明:随着时效温度的升高,显微组织中晶内次生片层状α相集束尺寸增大,位向关系变得简单,β相转变组织含量增多,合金的强度减小,塑性及断裂韧性升高,采用800℃×4 h,WC+660℃×8 h,AC较佳热处理制度,TC17钛合金的室温拉伸性能、断裂韧性及高、低周疲劳性能均满足技术标准要求,且各项力学性能匹配良好。  相似文献   
2.
为了确定BT25y钛合金的最佳等温锻造工艺参数,研究了20%,40%和60%这3种变形程度对其组织和性能的影响。结果表明:随着变形程度的提高,原始的β大晶粒逐渐被压扁,β晶界发生一定程度的破碎,晶内片状α相宽度加大,组织变得更加均匀;同时,合金强度呈先减小后增大的趋势,伸长率和断面收缩率变化规律相同,都呈递增趋势,断裂韧性基本上也是随变形量的增加而提高,室温拉伸断裂方式由穿晶解理断裂转变为准解理断裂,在较大变形量时又演变成韧性断裂。实验结果表明在本实验条件下,等温锻造变形量为60%时可以获得较好的组织性能匹配。  相似文献   
3.
通过拉伸实验研究了供应态LC9铝合金经退火处理后的超塑性变形特性。在初始应变速率3.3×10-4s-1,拉伸温度410~510℃时,合金均具有超塑性,平均伸长率为106%~181%。最佳超塑性温度为450℃,最佳初始应变速率为3.3×10-4s-1,在此温度和应变速率条件下,合金平均伸长率达到181%,m值为0.41,流动应力仅为14.4MPa。显微组织和断口观察表明,在超塑性变形过程中发生了明显的动态再结晶,再结晶晶粒等轴、细小、均匀。空洞在晶界处形核、长大,最后连接,导致试样断裂。  相似文献   
4.
基于TC17合金β跨相区锻造试验,研究了始锻温度、变形程度、锻后冷却方式对TC17钛合金组织和性能的影响。试验表明:TC17钛合金的显微组织演变和室温力学性能对于β锻造参数表现出不同程度的敏感性;随着始锻温度的升高,晶粒细化程度增大,不同的始锻温度可显著影响合金的强度;通过增大合金的变形程度可显著改善组织中的残留魏氏组织,进而对强度产生较大影响,合金内部粗晶组织的变形不均匀化进一步增强;锻后冷却方式为缓冷时,晶内次生α相长度增加,可有效提高合金的断裂韧性。在始锻温度为918℃、变形程度为60%、锻后冷却方式为缓冷的条件下,TC17钛合金的室温力学性能匹配较佳。  相似文献   
5.
TC17钛合金是一种富β稳定元素的α+β两相钛合金,其名义成分为Ti-5Al-2Sn-2Zr-4Mo-4Cr,具有高强度、高断裂韧性及高淬透性.美国已成功地将其用于军用和民用航空发动机的压气机盘、风扇盘等零件上.该合金一般在β相区锻造,锻后采用两重退火,从而获得网篮编织α组织,有很高的断裂韧性和蠕变抗力.  相似文献   
6.
等通道转角挤压(ECAP)是一种获得超细晶粒的重要制备方法,它是通过材料在等通道模具中的大剪切变形而实现晶粒细化的.研究了LDl0合金的等通道转角挤压及热处理工艺对显微组织的影响,优化了工艺参数.试验结果及分析表明,对试样在300℃下按路径B(每次挤压时试样旋转90°,旋转方向不变)挤压4次并经350℃退火1h可得到细小、均匀的等轴品.为LD10合金的晶粒细化及超塑性近净成形技术的开发提供试验依据.  相似文献   
7.
通过拉伸实验研究了供应态LC9铝合金经退火处理后的超塑性变形特性.在初始应变速率3.3×10-4 s-1,拉伸温度410~510℃时,合金均具有超塑性,平均伸长率为106%~181%.最佳超塑性温度为450℃,最佳初始应变速率为3.3×10-4 s-1,在此温度和应变速率条件下,合金平均伸长率达到181%,m值为0.41,流动应力仅为14.4MPa.显微组织和断口观察表明,在超塑性变形过程中发生了明显的动态再结晶,再结晶晶粒等轴、细小、均匀.空洞在晶界处形核、长大,最后连接,导致试样断裂.  相似文献   
8.
等温锻造温度对TC18钛合金组织性能的影响   总被引:3,自引:2,他引:1  
研究了TC18钛合金在5.5×10-4s-1恒应变速率下、60%大变形等温锻造时,温度变化对合金组织和性能的影响.结果表明:显微组织对温度变化敏感,在两相区锻造时,显微组织由初生α相和β转变组织组成,随着锻造温度的升高,初生α相的含量逐渐减少,尺寸增大,等轴化程度增加;在相变点以上锻造时为魏氏组织.室温和高温拉伸强度随锻造温度的升高不断增加,拉伸塑性不断降低,室温冲击韧性也呈下降趋势.在860℃等温锻造时,显微组织为双态组织,强度和塑性达到最佳配合,获得良好的综合力学性能.860℃为较佳等温锻造温度.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号