首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   2篇
电工技术   6篇
化学工业   36篇
金属工艺   8篇
机械仪表   1篇
建筑科学   5篇
能源动力   11篇
轻工业   4篇
水利工程   4篇
无线电   37篇
一般工业技术   59篇
冶金工业   22篇
自动化技术   62篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   23篇
  2020年   13篇
  2019年   17篇
  2018年   10篇
  2017年   14篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   18篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1960年   1篇
  1956年   1篇
排序方式: 共有255条查询结果,搜索用时 31 毫秒
1.
An addition of boron largely increases the ductility in polycrystalline high-temperature Co–Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ε (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co–17Re–23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ε to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co–17Re–23Cr–1.2Ta–2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0–1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.  相似文献   
2.
Microsystem Technologies - This paper represents low power and high speed design issues of Hamming code generation and error detection circuit using complementary metal oxide semiconductor (CMOS)...  相似文献   
3.
4.
Microsystem Technologies - Single-Walled Carbon Nanotubes (SWCNTs) are widely used as potential carriers in drug delivery systems. The objective of this work was to observe the effects of pristine,...  相似文献   
5.
Polymer clay nanocomposites (PCN) of Polyamide6 and sodium montmorillonite are prepared using different organic modifiers (12‐aminolauric acid, n‐dodecylamine, and 1,12‐diaminododecane) to study effect of organic modifiers on structure and nanomechanical properties of PCN. Using X‐ray diffraction and differential scanning calorimetry, crystalline nature of PCNs are evaluated. Nanoscale viscoelastic properties of PCNs are evaluated using nanodynamic mechanical analyzer (NanoDMA). Nanoscale elastic modulus and hardness of PCNs are evaluated using nanoindenter. PCNs show enhancement in elastic modulus, storage modulus, loss modulus, and loss factor by maximum amount of 62.88%, 56.38%, 145.74%, and 71.43%, respectively, and decrease in percentage crystallinity by 16.52% compared to pure polymer. This result indicates that organic modifiers have effect on crystallinity and nanomechanical properties of PCN. To evaluate effect of clay loading on nanomechanical properties of PCN, PCN containing 12‐aminolauric acid is synthesized with different weight percent (3, 6, and 9% of weight of polymer) of organically modified montmorillonite (OMMT), which shows that nanomechanical properties of PCN improves with increase in clay loading. Our study reveals that change in crystallinity of polymer in PCN may have role in the enhancement of nanomechanical properties of PCNs in comparison to pristine polymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
6.
An in situ deposition approach was used for the synthesis of nano‐CaSO4 and nano‐Ca3(PO4)2. The nanosize particles were confirmed with an X‐ray diffraction technique. Composites of polypropylene (PP) with 0.1–0.5 wt % nano‐ or commercial CaSO4 or nano‐Ca3(PO4)2 were prepared. The transition from the α phase to the β phase was observed for 0.1–0.3 wt % nano‐CaSO4/PP and nano‐Ca3(PO4)2/PP composites. This was confirmed by Fourier transform infrared. A differential scanning calorimetry analysis was carried out to determine the thermal behavior of the nanocomposites with increasing amounts of the nano‐CaSO4 and nano‐Ca3(PO4)2 fillers. Increases in the tensile strength and Young's modulus were observed up to certain loading and were followed by a decrease in the tensile strength. A continuous decrease in the elongation at break (%) was also observed for commercial CaSO4 and larger nano‐Ca3(PO4)2. A decrease in the mechanical properties after a certain loading might have been due to the agglomeration and phase transition of PP in the composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 670–680, 2007  相似文献   
7.
This paper presents the analytical models of power consumption in macrocell, microcell, picocell and femtocell based networks. Five case studies are presented in this paper where macrocells, microcells, picocells and femtocells are deployed based on the number of mobile subscribers present in a region, mobile user traffic in that region and the area of the region where cellular coverage has to be provided. A comparative study is performed between the power consumption by the base stations in each of these five cases and that of the only macrocell based network. The simulation results demonstrate that using each of these five strategies the power consumption by the base stations can be minimized than that of only macrocell based network. Based on the power consumption by the base stations in these five schemes, we have categorized the networks into five classes, A, B, C, D and E, each of which contains cells of different types to reduce power consumption to achieve green cellular network.  相似文献   
8.
This paper proposed a Neuro-Genetic technique to optimize the multi-response of wire electro-discharge machining (WEDM) process. The technique was developed through hybridization of a radial basis function network (RBFN) and non-dominated sorting genetic algorithm (NSGA-II). The machining was done on 5 vol% titanium carbide (TiC) reinforced austenitic manganese steel metal matrix composite (MMC). The proposed Neuro-Genetic technique was found to be potential in finding several optimal input machining conditions which can satisfy wide requirements of a process engineer and help in efficient utilization of WEDM in industry.  相似文献   
9.
Harmonic elimination problem in PWM inverter is treated as an optimization problem and solved using particle swarm optimization (PSO) technique. The derived equation for computation of total harmonic distortion (THD) of the output voltage of PWM inverter is used as the objective function in the PSO algorithm. The objective function is minimized to contribute the minimum THD in the voltage waveform and the corresponding switching angles are computed. The method is applied to investigate the switching patterns of both unipolar and bipolar case. While minimizing the objective function, the individual selected harmonics like 5th, 7th, 11th and 13th can be controlled within the allowable limits by incorporating the constraints in the PSO algorithm. The results of the unipolar case using five switching angles are compared with that of a recently reported work and it is observed that the proposed method is effective in reducing the voltage THD in a wide range of modulation index. The simulated results are also validated through suitable experiments.  相似文献   
10.
Purpose: In (hemoglobin, Hb) HbEβ‐thalassemia, HbE (β‐26 Glu→Lys) interacts with β‐thalassemia to produce clinical manifestation of varying severity. This is the first proteomic effort to study changes in protein levels of erythrocytes isolated from HbEβ‐thalassemic patients compared to normal. Experimental design: We have used 2‐DE and MALDI‐MS/MS‐based techniques to investigate the differential proteome profiling of membrane and Hb‐depleted fraction of cytosolic proteins of erythrocytes isolated from the peripheral blood samples of HbEβ‐thalassemia patients and normal volunteers. Results: Our study showed that redox regulators such as peroxiredoxin 2, Cu‐Zn superoxide dismutase and thioredoxin and chaperones such as α‐hemoglobin stabilizing protein and HSP‐70 were upregulated in HbEβ‐thalassemia. We have also observed larger amounts of membrane associated globin chains and indications of disruption of spectrin‐based junctional complex in the membrane skeleton of HbEβ‐thalassemic erythrocytes upon detection of low molecular weight fragments of β‐spectrin and decrease in β‐actin and dematin content. Conclusion and clinical relevance: We have observed interesting changes in the proteomic levels of redox regulators and chaperons in the thalassemic hemolysates and have observed strong correlation or association of the extent of such proteomic changes with HbE levels. This could be important in understanding the role of HbE in disease progression and pathophysiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号