首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
化学工业   1篇
金属工艺   2篇
建筑科学   2篇
轻工业   4篇
无线电   4篇
一般工业技术   7篇
冶金工业   1篇
自动化技术   1篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
  1992年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
Abstract: Onion is used widely as a condiment for meat and other types of food in Iran. Because of the high sensitivity of this product to storage conditions and having not enough storage under controlled atmosphere (CA), the effects of drying method, packaging, and temperature during storage on thin slices of fried red Azershahr variety onion were investigated. To prepare this processed food with excellent organoleptic properties and useful in the food service industry onions were sliced (2 mm), deep-fried with corn frying oil in a batch fryer at 150 °C, and dried to a water content of 3-4% in a hot-air dryer at 70 °C for 24 h and a microwave system. Samples were packed in aluminum foil, which was purged by nitrogen gas, and cellophane-sealed with thermal sewing. Then these samples were kept for one year at laboratory temperature and in a freezer at −18 °C. During the storage time the moisture content, peroxide value, vitamin C content, total microbial count (TMC), and organoleptic characteristics of the samples were analyzed every 2 mo. The results of microbial analyses indicated that after 6 mo all of the samples had higher TMCs than the permission limits so the expiration date was set before that. The moisture contents and peroxide values showed a noticeable increase, probably due to seal failure, whereas vitamin C decreased up to 66% during storage. The loss of sensory properties was parallel to the microbial and chemical results. The findings revealed that the best sample was oven-dried, packed in aluminum foil under inert gas, and kept in a freezer (OAF) up to 6 mo.  相似文献   
3.
Fabrication of flexible and free‐standing graphene‐fiber‐ (GF‐) based microelectrode arrays with a thin platinum coating, acting as a current collector, results in a structure with low impedance, high surface area, and excellent electrochemical properties. This modification results in a strong synergistic effect between these two constituents leading to a robust and superior hybrid material with better performance than either graphene electrodes or Pt electrodes. The low impedance and porous structure of the GF results in an unrivalled charge injection capacity of 10.34 mC cm?2 with the ability to record and detect neuronal activity. Furthermore, the thin Pt layer transfers the collected signals along the microelectrode efficiently. In vivo studies show that microelectrodes implanted in the rat cerebral cortex can detect neuronal activity with remarkably high signal‐to‐noise ratio (SNR) of 9.2 dB in an area as small as an individual neuron.  相似文献   
4.
5.
The corrosion inhibition effect of cationic surfactants, DTAB (Dodecyl Trimethyl Ammonium Bromide) and TTAB (Tetradecyl Trimethyl Ammonium Bromide), on low carbon steel was studied using weight loss, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements. The effect of chain length compatibility on corrosion inhabitancy of surfactant and co-surfactant was investigated by C7OH (1-heptanol), C12OH (1-dodecanol) and C15OH (1-pentadecanol) as nonionic co-surfactants in acidic media at different concentrations of DTAB and TTAB. Data represented that the corrosion rate decreased by increasing concentration of DTAB and TTAB, independently. The effect of chain length compatibility on surfactant behavior was discussed. Decreasing of corrosion rate for DTAB + C12OH was more pronounced than other mixtures.  相似文献   
6.
In this paper, the corrosion inhibition of cationic gemini surfactant, in the absence and presence of halide salts (NaCl, NaBr and NaI) on steel in HCl was investigated at 20 ± 1 °C. The effects of pH, immersion time and salt concentration on the corrosion inhibition of steel were studied using weight loss, open circuit potential and electrochemical impedance spectroscopy. Inhibition efficiency increases by increasing surfactant concentration. Synergistic effect between surfactant and salts was studied. The inhibition efficiency increases by increasing salt concentration. This composite inhibitor containing gemini surfactant and halide was efficient and low-cost for steel corrosion inhibition in HCl.  相似文献   
7.
Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro‐ and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press‐rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically‐conductive tracks in electronic circuits with a self‐healing property. The demonstrated application of co‐fillers, together with liquid metal droplets, can be used for establishing electrically‐conductive printable‐composite tracks for future large‐area flexible electronics.  相似文献   
8.
Alternaria alternata and Alternaria radicina are fungal species that occur in several food crops and may produce mycotoxins and phytotoxins. The toxigenic profile of A. alternata and A. radicina isolated from carrot and other umbelliferous plants was determined by growing the fungus on rice and carrot discs. Most of the tested isolates of A. alternata produced the mycotoxins tenuazonic acid, alternariol, alternariol methyl ether and altertoxin-I on rice. Only alternariol and alternariol methyl ether were produced on carrot discs. When cultured on rice, none of the isolates of A. alternata from umbelliferous plants produced AAL toxins and fumonisins. AAL toxins, but not fumonisins, were instead produced by A. alternata f. sp. lycopersici isolate NRRL 18822 isolated from tomato. A. radicina produced the phytotoxic compounds radicinin, epi-radicinol and radicinol on carrot discs, whereas it produced radicinin and radicinol on rice. Although A. alternata has been frequently found in organic carrots, none of the above mycotoxins was detected in carrot roots or in carrot commercial products. The reduction of alternariol and alternariol methyl ether during carrot juice processing at laboratory scale was estimated to be >98%. Based on these findings and previous reports, it can be concluded that Alternaria mycotoxins in carrots do not represent a hazard for consumers.  相似文献   
9.
The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic‐co‐glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution‐processed graphene into the design process and practical fiber architectural engineering. The as‐produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as‐prepared fibers is as high as 150 S m?1 (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon‐PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647‐ and 59‐folds, respectively, through addition of graphene.  相似文献   
10.
This study investigated the categories of generative and conservative offices by using syntactic theories and conducting a comparativean alysis of two different layout configurations. Generativity depends on several features that include but are not limited to spatial criteria. Generativity is also affected by aspects that extend beyond the physical, such as the symbolic relationship between the social organism of an organization and the internal structure of a workplace. Results show that no consistent relationship exists between spatial variables and behaviors even though the examined layouts satisfy an organization's basi ccultural require-ments, including privacy, territoriality, and hierarchy. Spatial parameters increase the potential for generativity, but such increase is not guaranteed without necessary changes in the attitudes, programs, and policies of organizations. Recognizing the limits of spatial variables requires evidence-based field research on office settings to determine operational and tailor-made solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号