首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学工业   4篇
金属工艺   1篇
冶金工业   5篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The cyclic oxidation behavior of a fine-grained, rapidly solidified 303 stainless steel was determined at 900 °C in pure oxygen. The rapidly solidified alloy exhibited superior resistance to oxidation compared with that of a wrought 304 stainless steel; its oxidation resistance was as good as that of a wrought 310 stainless steel, even though the latter alloy contained more Cr and Ni. The matrix of the rapidly solidified steel contained a uniform dispersion of fine MnS precipitates (0.2 to 0.5 μm), which were effective in inhibiting grain growth at elevated temperatures. The enhanced resistance to oxidation of the rapidly solidified alloy is attributed to two factors: (1) the formation and growth of protective Cr2O3 and SiO2 scales were promoted by the fine alloy grain size (5 to 8 =gmm) and by the presence of the MnS dispersion, and (2) the adherence of the scale was increased by the formation of intrusions of SiO2 from the external scale into the alloy, which formed around MnS precipitates and along closely-spaced alloy grain boundaries, and which acted to key the scale mechanically to the alloy.  相似文献   
2.
Thermally grown, alpha-Al2O3 external scales formed on alloys after oxidation in pure oxygen at temperatures between 1000° and 1500°C were analyzed using FEG-STEM/XEDS. Alloy dopants such as Y, Zr, La, Hf, and Ti were found to segregate to the alpha-Al2O3 grain boundaries and to the alloy-scale interface. With increasing oxidation time and temperature, the amount of segregant on the oxide grain boundaries near the gas interface increases until a critical level is reached and precipitates begin to nucleate and grow. These observations are a result of the outward transport of dopants from the alloy, through the external alumina scale, to the gas interface. The apparent driving force for the dopant diffusion is the oxygen potential gradient in the growing oxide scale.  相似文献   
3.
Utilizing x-ray microanalysis in samples studied with scanning transmission electron microscopy, segregation of Fe, Cr and Sc has been found at grain boundaries of polycrystalline MgO. Samples studied contain between 500 and 1200 cation ppm of each solute, or of all three. The level of grain boundary segregation of Fe and Sc was approximately proportional to the bulk concentration while the boundary concentration of Cr was less than the other solutes, more so at higher concentrations. This results is attributed to the higher association energy of CrMgVMg and Cr′Mg-V″Mg-Cr′Mg complexes which have a negative or neutral charge in the MgO matrix, thus not contributing to the space charge layer.  相似文献   
4.
A scanning transmission electron microscope (STEM) technique was used to measure Mo concentrations at ferrite:austenite (α:γ) interfaces in an Fe-0.24 pct C-0.93 pct Mo alloy partially transformed at 650°C, 630°C, and 610°C. These concentrations were quite small at 650°C, which is just below the bay temperature of the time-temperature-transformation (TTT) curve for the initiation of ferrite formation. There were larger concentrations at 630°C, a temperature at which transformation stasis (incomplete transformation) occurred. Concentrations at 610°C were intermediate between the values observed at 650°C and 630°C. The average accumulation at the latter temperatures increased appreciably as a function of transformation time. After each heat treatment, there was considerable variation in Mo accumulation from one α:γ interface to another and, to a lesser extent, from one region to another along the same interface. These higher Mo concentrations were deduced to have developed largely through volume diffusion of Mo, mainly through ferrite, to interfaces whose ledgewise growth had been interrupted by growth stasis. (Mo2C precipitation at α:γ boundaries occurred only at the end of growth stasis.) It appears that only a very small amount of Mo segregation is needed, probably at specific interfacial sites, in order to produce growth cessation. Growth kinetics anomalies of this kind continue to provide the best evidence available for the operation of a coupled-solute drag effect. This article is based on a presentation given in the symposium “The Effect of Alloying Elements on the Gamma to Alpha Transformation in Steels,” October 6, 2002, at the TMS Fall Meeting in Columbus, Ohio, under the auspices of the McMaster Centre for Steel Research and the ASM-TMS Phase Transformations Committee.  相似文献   
5.
A quantitative study of space charge solute segregation at grain boundaries in TiO2 is conducted, using a new STEM method for the measurement of aliovalent solute accumulation. It is shown that the electrostatic potential at grain boundaries can be varied in sign and magnitude with doping, oxygen pressure, and temperature, and that the isoelectric point lies in slightly donor-doped compositions for samples annealed in air. The experimental results closely fit the space charge model in Part I. Space charge solute segregation is found even in defect regimes of high electron concentration. Approximately one in ten grain boundaries are "special" in exhibiting no detectable segregation; in one such instance a twin boundary is identified. Among boundaries with significant amounts of segregation, clear differences in potential also exist. From the potential determined in acceptor- and donor-doped compositions, the Frenkel energy (assumed to be lower than the Schottky energy in TiO2) can be separated into its individual terms. An average value for the titanium vacancy formation energy of gvTi = 2.4 eV and an upper limit to the titanium interstitial formation energy of gTii = 2.6 eV are obtained.  相似文献   
6.
Static precipitation and recrystallization following hot compression of austenite and the interactions between the two processes have been studied in a set of aluminum-killed HSLA steels containing 0.1 pct carbon, [0.016 - 0.026] pct nitrogen and 0.1 or 0.2 pct vanadium. Two steels containing both vanadium (0.1 and 0.2 pct) and niobium (0.03 pct) were included for purposes of comparison. The compression and the static tests were all carried out isothermally at temperatures between 800 and 900 °C. The course of recrystallization was followed by measurements of the rate of softening and by optical metallography of specimens quenched from the test temperature after different times. Precipitation was studied by measurements of the rate of hardening, by transmission electron microscopy of thin foils, carbon and aluminum extraction replicas, and by X-ray dispersion and energy-loss spectroscopy from individual precipitates. The temperature of the nose of theC-curve for precipitation in vanadium steels is much lower than that in niobium steels, as is the temperature, TR, below which no recrystallization occurs in short times. Precipitation occurs both at austenite grain boundaries and in the grains (matrix precipitation). The former starts early and the precipitates grow rapidly to an approximately constant size; the matrix precipitates grow more slowly and are responsible for the observed hardening of the austenite. The relevance of various models proposed for the retardation and arrest of recrystallization of austenite are discussed. In the steels containing vanadium and niobium the precipitates contain both heavy elements: (V,Nb) (C,N). The Nb/V ratio in the matrix precipitates is different than in the parent austenite. The grain-boundary precipitates, however, contain the same Nb/V ratio as the parent austenite. The rate of hardening exhibits a reverseC-curve behavior, being more rapid than in the corresponding vanadium steels at higher temperatures and about the same at lower temperatures. Formerly Research Associate at MIT  相似文献   
7.
The effect of vanadium on the isothermal austenite-ferrite transformation, between 725 °C and 775 °C, of a hot-deformed microalloyed steel has been studied by examination of the microstructure and measurement of the volume fraction of ferrite in specimens quenched from the reaction temperature. The accompanying precipitation was studied by transmission electron microscopy of thin foils and carbon extraction replicas and by electron energy-loss spectroscopy. Very early in the transformation a continuous band of fine-grained ferrite forms at austenite grain boundaries. After some time some of these grains coarsen to form large equiaxed ferrite grains. It is found that vanadium has no effect on the time to the start of coarsening but thereafter accelerates the rate of formation of ferrite. Interphase precipitation of VN occurs throughout the transformation in the vanadium steels and this is thought to influence the rate at which the ferrite coarsens at the lower temperatures (750 ° and 725 °C) in the range studied.  相似文献   
8.
Pint  B. A.  Garratt-Reed  A. J.  Hobbs  L. W. 《Oxidation of Metals》2001,56(1-2):119-145
Alumina scales formed during cyclic oxidation at 1200°C on three Y2O3–Al2O3-dispersed alloys: Ni3Al, -NiAl, and FeCrAl (Inco alloy MA956) were characterized. In each case, the Y2O3 dispersion improved the -Al2O3 scale adhesion, but in the case of Ni3Al, an external Ni-rich oxide spalled and regrew, indicating a less-adherent scale. A scanning-transmission electron microscope (STEM) analysis of the scale near the metal–scale interface revealed that the scale formed an ODS FeCrAl showed no base metal-oxide formation. However, the scale formed on ODS Ni3Al showed evidence of cracking and Ni-rich oxides were observed. The microstructures and mechanisms discussed may be relevant to a thermal-barrier coating with an Al-depleted aluminide bond coat nearing failure.  相似文献   
9.
The development of dual-phase structures with different morphologies has been studied in detail by intercritical annealing specimens of a steel containing 0.11 pct C and 1.6 pct Mn with different microstructures before annealing. The kinetics of formation of the two-phase structure at the annealing temperature and the redistribution of substitutional solute elements were measured in specimens quenched from the intercritical annealing temperature. The structure before annealing was either banded ferrite-pearlite, homogenized ferrite-pearlite, lath martensite, spheroidal cementite dispersed in ferrite, or austenite. No measurable partitioning of silicon or molybdenum, present in the steel in small concentrations, was found. However, close to equilibrium partitioning of manganese occurred on annealing specimens with either a ferrite-pearlite or a lath martensite structure, but during the separation of ferrite from austenite in step-quenched specimens there was no partitioning. Surprisingly, measurements of manganese concentrations using an electron beam of 1 nm diameter at intervals of 5 nm or less revealed the presence of narrow spikes in the concentration profile at many ferriteaustenite interfaces in specimens with a ferrite-pearlite or martensite starting structure as well as in those step-quenched from austenite. In some instances, a minimum in the concentration profile was found in ferrite, adjacent to a maximum at an interface. Thus, adsorption of manganese at ferriteaustenite interfaces produces concentrations in excess of the concentrations indicated by the equilibrium diagram. The probable diffusion processes controlling the kinetics of transformation in the different microstructures are identified.  相似文献   
10.
A Co–45 wt% Cr alloy that was implanted with 2×1016 yttrium ions/cm2 was oxidized at 1000°C in pure oxygen for 25 h. The chromia film that formed on the surface of the alloy had a grain size of 200 to 300 nm. Yttrium was segregated to the chromia grain boundaries, and both coherent and incoherent particles of YcrO3 (<2 vol% of the oxide film) were present in the chromia film.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号