首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   2篇
金属工艺   2篇
能源动力   1篇
一般工业技术   2篇
原子能技术   2篇
  2020年   1篇
  2014年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Ni-based superalloy Inconel 617 (IN617) is one of the main candidate structural materials for high temperature components (heat exchanger) of the gas-cooled fast reactor (GFR), a possible candidate for generation IV nuclear reactor. The material in operating conditions will be exposed to impure He at a temperature of around 850 °C. The impurities are expected to be oxidizing (such as O2, H2O) but since no feedback experience is available for this type of reactor, the level of impurities is completely unknown. Hence, an attempt has been made to understand the influence of oxygen partial pressure on oxide composition and on the oxidation mechanisms of IN617 at 850 °C. To achieve this, oxidation tests were performed at 3 different range of partial pressure: 10?5, 0.2 and 200 mbar. Tests were performed from 1 h to 28 days and the obtained oxide layers were characterized using MEB, EDX, XPS, XRD and GD-OES. The oxide layers were mainly composed of chromia containing TiO2 and thickening with time. Aluminium oxide formed internally. Other oxides were detected in the scale, such as NiO, CoO, MoO3 and MnO2, except for the lowest oxygen partial pressure experiments, where a selective oxidation took place. The scale-growth mechanism was cationic for low and medium oxygen partial pressure conditions. A growth following a transient oxidation mechanism was observed for high oxygen partial pressure.  相似文献   
2.
Oxidation of Metals - The oxidation of a Ni–30Cr alloy at 700 °C in impure argon was studied in order to provide new elements of understanding on chromia scale growth in low...  相似文献   
3.
Siderite thin layers have been obtained by electrophoretic deposition on an inert substrate (gold). Scanning electron microscopy image exhibits a compact and homogeneous film composed of round grains which diameter is about 1-2 µm. The influence of two parameters, namely the electrode potential and the deposition time, on its thickness and its microstructure was investigated. The thickness was shown to be slightly dependent of the electrode potential (1.2 µm for − 0.70 V and 1.7 µm for − 0.95 V after 17 h). The crystallite size, estimated by X-ray diffraction patterns, was about 5 nm, depending on both electrode potential and deposition time. Despite its high sensitivity to oxygen, X-ray photoelectron spectroscopy spectra prove that the siderite surface has been kept out from oxidation. These siderite thin layers could be used as modified electrodes for further interaction studies.  相似文献   
4.
Tritium retention in plasma facing materials such as tungsten is a major concern for future fusion reactors. During ITER operating mode, the reactor could generate tritiated tungsten dust-like particles which need to be characterized in terms of amount of trapped tritium, tritium source and radiotoxicity. This study is focused on the preparation and characterization of tungsten particles and on a comparative analysis of tritium absorption/desorption kinetics in these particles and in massive samples. An original gas phase thermal charging procedure was used successfully for tritium incorporation in tungsten powders and massive samples. Much larger tritium amounts are incorporated in W particles than in massive samples indicating important surface effects on tritium absorption, desorption and trapping in W. Tritium desorption from particles occurred at different temperatures related with different interactions on the particles surface and in the bulk; the tritium behavior in massive samples was also shown to depend on the metal microstructure. According to these experimental results tritium absorption/desorption in W particles may have important implications on tritium management in ITER reactor.  相似文献   
5.
The increase of the rebars corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the transition from passive to active corrosion of mild steel rebars in carbonated concrete. For this purpose, electrochemical techniques (polarization curves, free corrosion potential measurements) and surface analyses (EDS, XRD, XPS) were used. Five different electrolytes, with pH ranging from 13 to 8.3, were chosen to simulate the interstitial concrete pore water at various degrees of carbonation. The results indicate that the transition pH is between 10 and 9.4. XPS results indicate a passivation of mild steel for pH values ranging from 13 to 10 due to the formation of a thin iron III oxide layer. Immersion tests highlight the importance of the buffering effect of the carbonate content. At the free corrosion potential in an aerated solution, a decrease of the carbonate content increases the corrosion rate. On the opposite, at low electrode potential, the kinetics of oxidation increases with the carbonate content.  相似文献   
6.
Austenitic stainless steels with 18% Cr have a good corrosion behavior in pure nitric acid. However, when oxidizing power of the solution increases, this kind of stainless steels faces a severe intergranular corrosion. Adding a sufficiently high concentration of silicon to the steel avoids this type of corrosion: in oxidizing solutions, those stainless steels exhibit generalized corrosion but their dissolution rate is higher than the one of stainless steels without silicon. To find out the role of silicon on such effects, the corrosion behavior of two different stainless steels with equivalent chromium content but with different silicon content (304L steel and Uranus S1N) has been studied in concentrated nitric acid solutions. Correlations have been evidenced between the passive layer composition investigated by XPS analysis and the corrosion behavior characterized by electrochemical techniques. The presence of silicon in the steel changes neither the oxidation state of chromium or iron, nor the ratio between iron and chromium in the passive layer. Silicon is present in the passive layer in an important content (35 at.%) and thus decreases the chromium content of the passive layer (80 and 50 at.% respectively for 304L steel and Uranus S1N after nitric passivation). Uranus S1N exhibits a less protective passive layer and so its generalized corrosion rate is higher than the one of 304L steel. A selective deposition of platinoïds highlights differences of polarization distribution on the surface between the grain boundaries and grain faces for theses steels. For Uranus S1N, the similar electrochemical behavior of grain boundaries and faces might be connected with the homogeneous silicon distribution.  相似文献   
7.
8.
Coffinite, USiO4, has been produced by hydrothermal synthesis. The synthesis products, coffinite nanoparticles (50 nm in size) with UO2 nanoparticles (a few nanometers), are always associated even if they are not always detected by XRD measurements. The formation of coffinite was shown to be very sensitive to several experimental parameters. The most important of these parameters are the pH, which must be in the range 8-9.5, the pressure, which must be below 50 bars, and the reaction conditions, which must be oxygen-free to maintain uranium in its tetravalent oxidation state. XRD and TEM reveal that tetragonal coffinite accounts for more than 90% of the final products while the by-products UO2 and a Si-rich amorphous phase are also present. The structural formula of the obtained coffinite is close to USiO4 as determined from EMPA (U0.99±0.06Si0.97±0.07O4). XPS measurements show a peak chemical shift of the U-4f core levels by 1 eV toward higher binding energies in coffinite compared with stoichiometric UO2. The U-4f7/2 and U-4f5/2 positions in coffinite are found to be near 380.8 ± 0.3 eV and 391.7 ± 0.3 eV, respectively.  相似文献   
9.
The aim of this work was to perform highly localized spectroscopic surface measurements by combining time-resolved laser spectroscopy and scanning near-field optical microscopy. The final purpose of that was to study surface sorption at the molecular level of trivalent ions in the framework of nuclear waste disposal assessment. Time-resolved laser spectroscopy presents the advantages of being selective, sensitive, and noninvasive and scanning near-field optical microscopy is a promising technique for high resolution surface speciation. Investigation of the interaction between trivalent europium and a monocrystalline alumina (1102) surface was made using different conditions of concentration and pH. We found that the distribution of sorbed europium was always homogeneous with a decay time of europium (III) equal to 350 micros+/-15 micros. On the other hand, carbonate species with a decay time of 210 micros+/-10 micros or other hydroxide species with a decay time of 180 micros+/-10 micros were detected on the surface when a higher concentration or a higher pH solution, respectively, were used. Distribution of these species was heterogeneous and their associated fluorescence signal was relatively high, evoking a precipitated form. X-ray photoelectron spectroscopy (XPS) was also used on the same samples as a complementary technique. A binding energy of 1135.1 eV was obtained for the sorbed europium and another binding energy of 1134.4 eV was obtained for the hydroxide species, thus confirming the presence of two kinds of species on the surface.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号