首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   5篇
金属工艺   1篇
一般工业技术   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Due to the widespread use of wood-plastic composites (WPCs), high-density polyethylene-wood flour composites (HDPE/WF) were studied in order to determine their stability in different application conditions. UV degradation and periodic absorption/desorption of moisture cause damaging changes to material during WPCs’ exterior application, so it is necessary to ensure WPCs’ durability against atmospheric influences. Samples were characterized by FTIR spectroscopy and scanning electron microscopy (SEM) in order to study the degradation after simulated weathering. The degree of water absorption was also determined. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for the determination of composites’ thermal properties. Results show that the stability of the HDPE/WF composites to UV treatment highly depends on stabilizer content and its dispersion in the polymer matrix. Incompatibility of HDPE and wood particles is a major problem that should be solved to achieve good durability and satisfying properties in use.  相似文献   
2.
A novel route for the synthesis of metallic palladium consisting of nanosize particles has been reported. The synthesis is based on (a) the addition of tetramethylammonium hydroxide (TMAH) to the aqueous solution of PdCl2, and (b) autoclaving of this precipitation system at 160 °C. The distribution of the nanosize particles of metallic palladium has its mean value at about 18 nm. The mechanism of the metallic palladium formation is briefly discussed.  相似文献   
3.
The properties of styrene–acrylonitrile (SAN) and ethylene–propylene–diene (EPDM) blends containing different types of calcium carbonate filler were studied. The influence of mixing type process on the blend properties was also studied. Two different mixing processes were used. The first one includes mixing of all components together. The other process is a two‐step mixing procedure: masterbatch (MB; EPDM/SAN/filler blend) was prepared and then it was mixed with previously prepared polymer blend. Surface energy of samples was determined to predict the strength of interactions between polymer blend components and used fillers. The phase morphology of blends and their thermal and mechanical properties were studied. From the results, it can be concluded that the type of mixing process has a strong influence on the morphological, thermal, and mechanical properties of blends. The two‐step mixing process causes better dispersion of fillers in blends as well as better dispersion of EPDM in SAN matrix, and therefore, the finest morphology and improved properties are observed in blends with MB. It can be concluded that the type of mixing process and carefully chosen compatibilizer are the important factors for obtaining the improved compatibility of SAN/EPDM blends. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
4.
The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media was monitored by X-ray diffraction (XRD), 57Fe Mössbauer and Fourier transform infrared (FT-IR) spectroscopies and field emission scanning electron microscopy (FE SEM). Acicular and monodisperse α-FeOOH particles were precipitated at a very high pH by adding a tetramethylammonium hydroxide solution to an aqueous solution of FeCl3. The XRD analysis of the samples precipitated in the presence of Zn2+ ions showed the formation of solid solutions of α-(Fe, Zn)OOH up to a concentration ratio r = [Zn]/([Zn] + [Fe]) = 0.0909. ZnFe2O4 was additionally formed in the precipitate for r = 0.1111, whereas the three phases α-FeOOH, α-Fe2O3 and ZnFe2O4 were formed for r = 0.1304. In the corresponding FT-IR spectra, the FeOH and FeO stretching bands were sensitive to the Zn2+ substitution, whereas the FeOH bending bands of α-FeOOH at 892 and 796 cm−1 were almost insensitive. The Mössbauer spectra showed a high sensitivity to the formation of α-(Fe, Zn)OOH solid solutions which were monitored on the basis of a decrease in Bhf values in dependence on Zn-doping. A strictly linear decrease in Bhf for α-FeOOH doped with Zn2+ ions was measured up to r = 0.0291, whereas for r = 0.0476 and higher there was a deviation from linearity. The presence of α-(Fe, Zn)OOH, α-Fe2O3 and ZnFe2O4 phases in the samples was determined quantitatively by Mössbauer spectroscopy. Likewise, Mössbauer spectroscopy did not show any formation of the solid solutions of α-Fe2O3 with Zn2+ ions. FE SEM showed a strong effect of Zn-doping on the elongation of acicular α-FeOOH particles (500–700 nm in length) up to r = 0.1111. For r = 0.1304 the sizes of ZnFe2O4 particles were around 30–50 nm, and those of α-Fe2O3 particles were around 500 nm, whereas a relatively small number of very elongated α-(Fe, Zn)OOH particles was observed. A possible mechanism of the formation of α-(Fe, Zn)OOH, α-Fe2O3 and ZnFe2O4 particles was suggested.  相似文献   
5.
Requirements for adequate permeability of polymeric materials to gases and vapors, good barrier and mechanical properties of polymers have boosted interest in developing new strategies to improve these properties. Research and development in polymeric materials coupled with appropriate filler, matrix-filler interaction and new formulation strategies to develop composites have potential applications in various types of packaging (agricultural produce, dried food, frozen food etc.). In this study, LDPE composites containing various types of fillers (zeolite TMAZ 7, nanoclay Cloisite 20A and precipitated calcium carbonate, CaCO3) were prepared using extrusion/injection molding. The microstructural and morphological changes as well as mechanical features of samples were characterized by scanning electronic microscopy and by tensile tests. The thermal degradation of LDPE composites was studied using thermogravimetric analysis. Barrier properties (permeability, the diffusion and the solubility constant) in modified LDPE samples were determined. It is found that used minor clay concentration is already very effective for achievement of good morphology. In the presence of nanoparticles, at lower content, the value of oxygen permeability of LDPE decreases. Also, the results have revealed that the samples containing fillers have increased thermal stability in comparison to pure LDPE.  相似文献   
6.
The effects of aluminium (Al3+)-dopant on the precipitation of uniform lath-like α-FeOOH particles, the obtention and growth of α-(Fe,Al)OOH and α-(Fe,Al)2O3 solid solutions, particle size and shape were investigated using X-ray powder diffraction, Mössbauer and Fourier transform infrared spectroscopies, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Acicular α-FeOOH particles, precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH), were used as reference material. The influence of Al-dopant was investigated by adding varying amounts of Al3+ ions to the initial FeCl3 solution. In the presence of lower concentrations of aluminium ions (up to 11.11 mol%) α-(Fe,Al)OOH as a single phase was formed, whereas higher concentrations led to an additional obtention and growth of α-(Fe,Al)2O3. Al-for-Fe substitution in the α-FeOOH and α-Fe2O3 structures was confirmed by a decrease in the unit-cell dimensions, a decrease in the hyperfine magnetic field and an increase in the wave number of the infrared absorption bands. The presence of lower concentrations of aluminium ions (up to 11.11 mol%) in the precipitation system did not affect the size and shape of the α-(Fe,Al)OOH particles, whereas higher concentrations influenced a decrease in the length and aspect ratio. In the presence of 42.86 mol% Al3+ ions fairly uniform disc-shaped α-(Fe,Al)2O3 were formed.  相似文献   
7.
The present work studies the morphology in poly(ethylene-terephthalate)/polyethylene (PET/HDPE) polymer blends and its impact on blend properties. Mixing process in blend preparation is the important parameter for the type of obtained blend morphology and final blend properties, so two different mixing processes were used. In the first one, all components are mixed together while another one includes two step mixing procedure using two different types of masterbatch as compatibilizers for PET/HDPE system. Such blends can be considered in terms of PET polymer recycling in the presence of HDPE impurities in order to find suitable compatibilizers, which will enhance the interactions between these two polymers and represents the possible solution in recycling of heterogeneous polymer waste. The morphology of the studied PET/HDPE blends was inspected by scanning electron microscopy to examine the influence of the mixing process and various compositions on blends morphology, and interactions between PET and HDPE. The surface properties were characterized by contact angle measurements. The effect of the extrusion on the samples thermal behaviour was followed by DSC measurements. FTIR spectroscopy was used for the determination of interactions between blend constituents. It can be concluded that the type of mixing process and the carefully chosen compatibilizer are the important factors for obtaining the improved compatibility in PET/HDPE blends.  相似文献   
8.
This article reports a study of flame retardancy and thermal and mechanical properties of wood-plastic composites (WPCs) based on high-density polyethylene and pine flour. The study shows that sample composition plays an important role in WPCs' properties. The influence of additives like fillers (SiO2 or CaCO3) and flame retardants ammonium polyphosphate (APP) and pentaerythritol (PER) on WPCs' properties has been considered. The best properties are shown in samples using SiO2 as filler and treated with the intumescent fire retardant APP/PER. Such samples have excellent fire retardancy with V-0 rating (UL-94 test) and imply that APP/PER fire retardant ensures effective fire retardancy for WPCs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号