首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
化学工业   7篇
金属工艺   25篇
无线电   3篇
一般工业技术   4篇
冶金工业   12篇
  2018年   1篇
  2017年   2篇
  2013年   5篇
  2012年   7篇
  2011年   4篇
  2010年   9篇
  2009年   7篇
  2008年   3篇
  2007年   3篇
  2004年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1967年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Experimental results are presented on subcritical crack growth under sustained and cyclic loads in a HIPed Si3N4 at 1450°C and a hot–pressed Si3N4–10 vol% SiCw composite in the temperature range 1300°–1400°C. Static and cyclic crack growth rates are obtained from the threshold for the onset of stable fracture with different cyclic frequencies and load ratios. Fatigue crack growth rates for both the monolithic and SiCw-reinforced Si3N4 are generally higher than the crack growth velocities predicted using static crack growth data. However, the threshold stress intensity factor ranges for the onset of crack growth are always higher under cyclic loads than for sustained load fracture. Electron microscopy of crack wake contact and crack–tip damage illustrate the mechanisms of subcritical crack growth under static and cyclic loading. Critical experiments have been conducted systematically to measure the fracture initiation toughness at room temperature, after advancing the crack subcritically by a controlled amount under static or cyclic loads at elevated temperatures. Results of these experiments quantify the extent of degradation in crack–wake bridging due to cyclically varying loads. The effects of preexisting glass phase on elevated temperature fatigue and fracture are examined, and the creep crack growth behavior of Si3N4–based ceramics is compared with that of oxide-based ceramics.  相似文献   
2.
In high-temperature fatigue crack growth (FCG) experiments on ceramic materials containing amorphous grain boundary phases, the crack growth rates under cyclic loads were observed to be lower than those predicted solely on the basis of crack growth velocities measured under static loads. In this paper, a rationalization was offered for such a behavior by means of a phenomenological glass-bridging model which takes the relaxation behavior of glass into account. In ceramics which exhibit subcritical crack growth through cavitation ahead of the crack tip, the maximum stress intensity factor of the fatigue cycle required to initiate FCG was observed to be always greater than or equal to the threshold stress intensity factor for crack growth under sustained far-field loads. This trend was also explained with the aid of the glass-bridging model and invoking the equivalence between bridging and damage zones. The elevated temperature FCG behavior of nitride-based ceramics which exhibit grain bridging in the wake during crack propagation was discussed and contrasted with oxide-based ceramics which show glass bridging.  相似文献   
3.
4.
5.
6.
The fracture toughness of bulk metallic glasses   总被引:1,自引:0,他引:1  
Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.  相似文献   
7.
The addition of small amounts of B to Ti–6Al–4V alloy reduces the as-cast grain size by an order of magnitude and introduces TiB phase into the microstructure. The effects of these microstructural modifications on both the high cycle fatigue and cyclic stress–strain response were investigated. Experimental results show that B addition markedly enhances the fatigue strength of the alloy; however, the influence of prior-β grain size was found to be only marginal. The presence of TiB particles in the matrix appears to be beneficial with the addition of 0.55 wt.% B to Ti–6Al–4V enhancing the fatigue strength by more than 50%. Strain-controlled fatigue experiments reveal softening in the cyclic stress–strain response, which increases with the B content in the alloy. Transmission electron microscopy of the fatigued specimens indicates that generation of dislocations during cyclic loading and creation of twins due to strain incompatibility between the matrix and the TiB phase are possible reasons for the observed softening.  相似文献   
8.
9.
The utility of Ti cladding in alleviating the notch sensitivity of both the monotonic and cyclic tensile properties of Ti matrix composites (TMC) has been examined. Experiments have been conducted on panels with two different clad thicknesses as well as on the TMC alone. Crack bridging models have been used to describe the composite behavior, incorporating explicitly the effects of the cladding. It is demonstrated that the notched strength can be raised up to the level corresponding to the unnotched TMC alone, with a critical clad thickness that depends on the fracture properties of the TMC and the notch size. The fatigue threshold can be elevated also, though it cannot reach the threshold of the un-notched TMC. The bridging models have been used to calculate the trends in the strength and the fatigue threshold with the clad thickness.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号