首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   20篇
  国内免费   2篇
电工技术   5篇
综合类   1篇
化学工业   67篇
金属工艺   8篇
机械仪表   11篇
建筑科学   13篇
能源动力   12篇
轻工业   32篇
水利工程   3篇
石油天然气   1篇
无线电   17篇
一般工业技术   32篇
冶金工业   4篇
原子能技术   2篇
自动化技术   72篇
  2023年   6篇
  2022年   16篇
  2021年   28篇
  2020年   21篇
  2019年   23篇
  2018年   25篇
  2017年   21篇
  2016年   37篇
  2015年   8篇
  2014年   8篇
  2013年   23篇
  2012年   12篇
  2011年   14篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  1997年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
1.

This study proposes a novel design to systematically optimize the parameters for the adaptive neuro-fuzzy inference system (ANFIS) model using stochastic fractal search (SFS) algorithm. To affirm the efficiency of the proposed SFS-ANFIS model, the predicting results were compared with ANFIS and three hybrid methodologies based on ANFIS combined with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO). Accurate prediction of uniaxial compressive strength (UCS) is of great significance for all geotechnical projects such as tunnels and dams. Hence, this study proposes the use of SFS-ANFIS, GA-ANFIS, DE-ANFIS, PSO-ANFIS, and ANFIS models to predict UCS. In this regard, the fresh water tunnel of Pahang–Selangor located in Malaysia was considered and the requirement data samples were collected. Different statistical metrics such as coefficient of determination (R2) and mean absolute error were used to evaluate the models. Referring to the efficiency results of SFS-ANFIS, it can be found that the SFS-ANFIS (with the R2 of 0.981) has higher ability than PSO-ANFIS, DE-ANFIS, GA-ANFIS, and ANFIS models in predicting the UCS.

  相似文献   
2.

Over the last decade, application of soft computing techniques has rapidly grown up in different scientific fields, especially in rock mechanics. One of these cases relates to indirect assessment of uniaxial compressive strength (UCS) of rock samples with different artificial intelligent-based methods. In fact, the main advantage of such systems is to readily remove some difficulties arising in direct assessment of UCS, such as time-consuming and costly UCS test procedure. This study puts an effort to propose four accurate and practical predictive models of UCS using artificial neural network (ANN), hybrid ANN with imperialism competitive algorithm (ICA–ANN), hybrid ANN with artificial bee colony (ABC–ANN) and genetic programming (GP) approaches. To reach the aim of the current study, an experimental database containing a total of 71 data sets was set up by performing a number of laboratory tests on the rock samples collected from a tunnel site in Malaysia. To construct the desired predictive models of UCS based on training and test patterns, a combination of several rock characteristics with the most influence on UCS has been used as input parameters, i.e. porosity (n), Schmidt hammer rebound number (R), p-wave velocity (Vp) and point load strength index (Is(50)). To evaluate and compare the prediction precision of the developed models, a series of statistical indices, such as root mean squared error (RMSE), determination coefficient (R2) and variance account for (VAF) are utilized. Based on the simulation results and the measured indices, it was observed that the proposed GP model with the training and test RMSE values 0.0726 and 0.0691, respectively, gives better performance as compared to the other proposed models with values of (0.0740 and 0.0885), (0.0785 and 0.0742), and (0.0746 and 0.0771) for ANN, ICA–ANN and ABC–ANN, respectively. Moreover, a parametric analysis is accomplished on the proposed GP model to further verify its generalization capability. Hence, this GP-based model can be considered as a new applicable equation to accurately estimate the uniaxial compressive strength of granite block samples.

  相似文献   
3.

Software design patterns are well-known solutions for solving commonly occurring problems in software design. Detecting design patterns used in the code can help to understand the structure and behavior of the software, evaluate the quality of the software, and trace important design decisions. To develop and maintain a software system, we need sufficient knowledge of design decisions and software implementation processes. However, the acquisition of knowledge related to design patterns used in complex software systems is a challenging, time-consuming, and costly task. Therefore, using a suitable method to detect the design patterns used in the code reduces software development and maintenance costs. In this paper, we proposed a new method based on conceptual signatures to improve the accuracy of design pattern detection. So we used the conceptual signatures based on the purpose of patterns to detect the patterns’ instances that conform to the standard structure of patterns, and cover more instances of patterns’ variants and implementation versions of the patterns and improve the accuracy of pattern detection. The proposed method is a specific process in two main phases. In the first phase, the conceptual signature and detection formula for each pattern is determined manually. Then in the second phase, each pattern in the code is detected in a semi-automatic process using the conceptual signature and pattern detection formula. To implement the proposed method, we focused on GoF design patterns and their variants. We evaluated the accuracy of our proposed method on five open-source projects, namely, Junit v3.7, JHotDraw v5.1, QuickUML 2001, JRefactory v2.6.24, and MapperXML v1.9.7. Also, we performed our experiments on a set of source codes containing the instances of GoF design patterns’ variants for a comprehensive and fair evaluation. The evaluation results indicate that the proposed method has improved the accuracy of design pattern detection in the code.

  相似文献   
4.
5.
6.
Uniaxial compressive strength (UCS) of rock is crucial for any type of projects constructed in/on rock mass. The test that is conducted to measure the UCS of rock is expensive, time consuming and having sample restriction. For this reason, the UCS of rock may be estimated using simple rock tests such as point load index (I s(50)), Schmidt hammer (R n) and p-wave velocity (V p) tests. To estimate the UCS of granitic rock as a function of relevant rock properties like R n, p-wave and I s(50), the rock cores were collected from the face of the Pahang–Selangor fresh water tunnel in Malaysia. Afterwards, 124 samples are prepared and tested in accordance with relevant standards and the dataset is obtained. Further an established dataset is used for estimating the UCS of rock via three-nonlinear prediction tools, namely non-linear multiple regression (NLMR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). After conducting the mentioned models, considering several performance indices including coefficient of determination (R 2), variance account for and root mean squared error and also using simple ranking procedure, the models were examined and the best prediction model was selected. It is concluded that the R 2 equal to 0.951 for testing dataset suggests the superiority of the ANFIS model, while these values are 0.651 and 0.886 for NLMR and ANN techniques, respectively. The results pointed out that the ANFIS model can be used for predicting UCS of rocks with higher capacity in comparison with others. However, the developed model may be useful at a preliminary stage of design; it should be used with caution and only for the specified rock types.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号