首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   2篇
综合类   3篇
机械仪表   1篇
一般工业技术   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
由于近年来车身轻量化的需求,全铝车身结构及混合材料车身结构是车身设计制造的发展趋势,其结构连接问题也面临巨大的挑战。自冲铆接作为一种冷成型技术,通过铆钉和板料形成机械内锁结构进行板材连接,可以用来连接两层和多层金属及非金属板材。相对于传统连接技术,自冲铆接具有无需预先打孔、连接过程环境友好、可以连接异质板材及非金属板材等优点,同时所得到的接头具有较好的密封性及力学性能。自冲铆接作为轻量化结构的一种新型连接手段,近年来因具有独特的优势得到迅速发展。疲劳性能是接头工程应用的关键性能指标,自冲铆接头的疲劳性能研究主要针对铝合金及高强钢等车身材料展开,近年来研究者们对钛合金和纤维增强复合材料等新型材料自冲铆接头的疲劳性能进行了相关探索性研究。影响自冲铆接头疲劳性能的因素众多,提高自冲铆接头疲劳性能的方法及探究接头的疲劳失效机理一直是研究者们所关注的热点。影响自冲铆接头疲劳性能的因素主要包括铆接工艺、基板参数、铆钉分布形式、接头搭接形式、疲劳加载参数、试验温度和添加粘接剂等,其中大量研究主要针对铆接工艺、基板参数和铆钉分布形式展开。研究表明,采用高强度的板材作下板、增加板厚及使用硬度较高的圆头铆钉进行连接能够提高单搭自冲铆接头的疲劳性能;铆钉个数的增加可以显著提高接头的疲劳性能,采用不同铆钉分布形式及铆钉边距影响接头的疲劳性能。自冲铆接头存在残余应力,同时微动磨损是导致机械连接疲劳失效的主要原因,通过去应力退火可以提高接头在高疲劳载荷下的疲劳寿命,对基板添加润滑剂镀层也可以改善接头的疲劳性能。此外,粘铆复合接头目前在车身连接中得到广泛应用,粘接剂可以减弱接头的应力集中,从而改善其疲劳性能。疲劳试验耗时较多,试验成本较高。研究自冲铆接头疲劳性能的影响因素可以为后续研究及其工程应用提供相关参考。本文归纳了自冲铆接头疲劳性能影响因素的研究进展并总结了改善接头疲劳性能的方法,同时对自冲铆接的研究方向进行分析和展望。  相似文献   
2.
为了研究钢铝自冲铆接头剥离失效行为,对5754铝合金和Q235钢异质自冲铆接头进行了剥离试验及仿真研究。建立了基于MMC失效准则的T型自冲铆接头有限元模型,对两种接头在剥离工况下的拉伸失效过程进行仿真,对比试验结果验证了有限元模型的可靠性,并对接头的剥离失效行为进行了分析。研究结果表明:建立的有限元模型能表征接头在剥离工况下的失效形式及力学性能;铝-钢接头因上板与铆钉分离失效,剥离过程中加载侧钉脚和钉头区域易产生应力集中,上板加载侧铆孔区域最先发生失效;钢-铝接头失效形式为铆钉与下板分离,剥离过程中加载侧钉头边缘及钉脚内壁区域易出现应力集中,下板铆扣区域发生脱层损伤,脱层损伤区域向非加载侧铆扣区域扩展。  相似文献   
3.
高强度钢板热冲压工艺与装备研究综述   总被引:1,自引:0,他引:1  
高强度钢板热冲压工艺是实现汽车轻量化、同时提高汽车碰撞安全性的重要途径之一,在汽车制造业中得到了广泛应用,是钢铁、模具、设备、零部件和汽车制造商关注和国内外学者研究的重点。从实际生产角度出发,对传统热冲压工艺研究中的应用要点进行综述:(1)热冲压材料化学成分对其性能的影响、常用镀层的特点与适用范围;(2)热冲压加热、成形、淬火、裁切和表面处理工序及零件连接工艺的应用要点;(3)热冲压数值模拟的重要影响因素和流程;(4)热冲压加热系统和压力机的类型与特点;(5)热冲压模具选材、设计与制造的要点及优化设计的流程。并对热冲压相关值得关注的研究方向做出展望。  相似文献   
4.
为了研究粘铆复合接头的胶层厚度对接头的成形质量和服役性能的影响,建立了无铆钉粘铆成形有限元模型,并通过实验验证有限元模型的有效性。利用有限元模型分析了接头成形后胶层的分布规律及接头成形过程中胶层的变化趋势,研究胶层厚度对接头成形的影响。结果表明:胶层厚度从接头底部中心到自锁处呈先增大后减小的趋势,其中底部圆角处胶层厚度最大;铆接过程中胶层厚度随冲头行程增加而变化;胶层厚度影响接头的自锁值与颈厚值。  相似文献   
5.
针对灵巧手虚拟现实的控制,提出了数据手套控制手指关节角度,肌电信号进行抓取力度控制的方法.建立了虚拟现实灵巧手模型,根据神经网络算法实现前臂肌电信号对抓取过程中的拇指尖力预测.实验改变拇指接触状态,预测力模型与实际力度对比,验证模型的有效性.该研究可用于智能假肢控制及上肢康复训练、遥操作机器人等领域.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号