首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
机械仪表   1篇
能源动力   3篇
  2022年   3篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
基于一台高压直喷汽油机,将汽油直喷喷射器替换为氢气直喷喷射器,试验研究了发动机燃用氢气与汽油时的燃烧和排放特性差异。采用空气稀释,进一步分析了氢气发动机稀薄燃烧模式下热效率提升潜力及氮氧化物排放特性,明确了氢气燃料对发动机燃烧及污染物排放的影响规律。结果表明,当量燃烧模式下,相比汽油发动机,氢气发动机的燃烧持续期明显缩短,有效热效率降低,NOx排放升高,CO及总碳氢(total hydrocarbon, THC)排放显著降低。提高氢气发动机的过量空气系数有助于改善有效热效率。在中等负荷工况下,过量空气系数为2.7时有效热效率可达43.5%。增大过量空气系数,氢气发动机能够在保持较高燃烧稳定性的情况下显著降低NOx排放。在低负荷工况下,当过量空气系数大于2.3时NOx排放最低可降低至44×10-6。  相似文献   
2.
通过对一台增压汽油直喷(gasoline direct injection,GDI)发动机活塞和凸轮型线的重新设计实现了高压缩比米勒循环,并在此基础上引入了废气再循环(EGR),研究了不同压缩比米勒循环和EGR综合作用对发动机的性能影响。结果表明:增大压缩比和采用米勒循环技术对爆震影响存在取舍(trade-off)关系,低速全负荷下高压缩比米勒循环相比原机油耗略有上升;而低压冷EGR技术由于缸内稀释冷却作用可以优化燃烧相位,对外特性工况有效燃油消耗率有明显的改善作用;在部分负荷工况下,压缩比的增加和米勒燃烧循环可使油耗较原机下降6.3%,在整合低压冷EGR技术后,油耗进一步下降3.1%。可以得出结论,合理地增加压缩比,采用米勒循环技术并匹配低压冷EGR技术,可以大幅改善发动机的燃油经济性。  相似文献   
3.
在一款采用废气涡轮增压的直喷汽油机上,进行了电动增压器和低压废气再循环(Low pressure exhaust gas recirculation, LP-EGR)技术组合对发动机经济性、NO_x排放特性以及动力性、EGR率瞬态响应特性影响的试验研究。结果表明:电增压工作时,低速外特性EGR率可达到25%,使得1 250~2 000 r/min外特性的燃烧相位提前,油耗相对于电增压不工作时下降8.5%~10%,同时NO_x排放显著降低;而在部分负荷工况下,电增压的泵吸作用使得最大EGR率大于30%,取得了油耗和NO_x排放同时改善的综合效果,且最高油耗下降率可达10.8%;此外电增压工作时,1 500 r/min下负荷从0.2 MPa增大到1.5 MPa的瞬态响应时间缩短2/3;当发动机定转速加大负荷运行时,电增压工作时进气歧管目标EGR率的建立时间可缩短1.3 s,有效优化了发动机加速过程的运转控制参数。  相似文献   
4.
基于一台2.0 L柴油发动机,在1 500 r/min、平均有效压力(brake mean effective pressure, BMEP)0.4 MPa~0.9 MPa工况下进行了汽油压燃(gasoline compression ignition, GCI)和柴油压燃(diesel compression ignition, DCI)的燃烧和原始污染物排放的对比研究。此外,基于6个全球轻型车统一测试循环(worldwide harmonized light vehicle test cycle, WLTC)聚类工况点,进行了三元催化器(three-way catalyst, TWC)和稀燃NOx捕集器(lean NOx trap, LNT)或被动选择性催化还原器(passive selective catalytic reduction, PSCR)组合的污染物后处理方案的研究。研究结果表明:在负荷较低时,由于油气过度混合,缸内温度低,GCI的有效热效率低于DCI。随着负荷的提高,相比DCI,GCI的热效率明显改善,有效热效率最多提升至约43.0%。不同负荷下,相比DCI,GCI的NOx排放略微下降,碳烟烟度(filter smoke number, FSN)显著下降;相比DCI,GCI的CO排放和HC排放在低负荷时大幅提高,但随着负荷提高,GCI的CO排放和HC排放与DCI的差距减小。基于某款车型实际测试的WLTC循环的6个聚类点对NOx、HC、CO污染物排放的后处理进行评估,GCI发动机采用TWC+LNT/PSCR的后处理方案在满足国六b排放法规方面具有一定的潜力。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号