首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
机械仪表   1篇
  2006年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
基于支持向量分类的水质分析应用研究   总被引:4,自引:0,他引:4  
支持向量机(SVM)是由V.Vapnik在统计学习理论(SLT)的基础上发展起来的一种新兴的用以解决小样本的机器学习方法.SVM能更好的代替传统分类器,特别是在高维数据空间具有较好的泛化能力.本文采用支持向量分类(SVC)方法研究了这一理论在工程领域的应用-济南地下水水质的分析.实验获得了较好的分类结果.SVC在小样本下的地下水水质分析中展示了良好的模式识别性能.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号