首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
综合类   1篇
化学工业   6篇
机械仪表   1篇
矿业工程   2篇
能源动力   1篇
轻工业   4篇
无线电   2篇
一般工业技术   6篇
冶金工业   5篇
自动化技术   4篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2011年   2篇
  2010年   3篇
  2005年   1篇
  2002年   2篇
  2000年   2篇
  1997年   1篇
  1994年   1篇
  1973年   1篇
排序方式: 共有32条查询结果,搜索用时 46 毫秒
1.
The fundamental characteristics of varied initial core-sizes of BaTiO3(BT) and its influential role on the morphology and dielectric properties of BaTiO3@0.6BaTiO3-0.4BiAlO3(BT@0.6BT-0.4BA) ceramic samples were studied. Alkoxide sol-precipitation method was adopted as revised chemical route to synthesize the constituent “core” BT powders in a dispersed phase, whereas the distinctive initial nano-sized particles were affected by the pre-calcination temperatures (600-900 °C).The microstructure of the uncoated BT ceramics revealed an exaggerated grain growth with an optimized dielectric constant (εmax >9 000) whilst the coated ceramics behaved otherwise (grain growth inhibited) when sintered at an elevated temperature. Regardless of the previously studied solubility limit (about 0.1%) of BT-BA samples, BT@0.6BT-0.4BA maintained a maximum dielectric constant (εmax) ranging from 1 592 to 1 708 and tan δ less than 2% under a unit mole ratio at room temperature. In view of all these analyses, the initial nanometer sizes of the as-prepared BT-core powders combined with the increase effect of cation substitutions of Bi3+ and Al3+ in the shell content, induced the diffuse transition phase of BT@0.6BT-0.4BA composition.  相似文献   
2.
Living beings have an unsurpassed range of ways to manipulate objects and interact with them. They can make autonomous decisions and can heal themselves. So far, a conventional robot cannot mimic this complexity even remotely. Classical robots are often used to help with lifting and gripping and thus to alleviate the effects of menial tasks. Sensors can render robots responsive, and artificial intelligence aims at enabling autonomous responses. Inanimate soft robots are a step in this direction, but it will only be in combination with living systems that full complexity will be achievable. The field of biohybrid soft robotics provides entirely new concepts to address current challenges, for example the ability to self‐heal, enable a soft touch, or to show situational versatility. Therefore, “living materials” are at the heart of this review. Similarly to biological taxonomy, there is a recent effort for taxonomy of biohybrid soft robotics. Here, an expansion is proposed to take into account not only function and origin of biohybrid soft robotic components, but also the materials. This materials taxonomy key demonstrates visually that materials science will drive the development of the field of soft biohybrid robotics.  相似文献   
3.
The dynamic self‐organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro‐ and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self‐organization. Here, a new nanotechnology‐based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane‐remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label‐free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (K D) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1‐induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached.  相似文献   
4.

The adoption of high-accuracy speech recognition algorithms without an effective evaluation of their impact on the target computational resource is impractical for mobile and embedded systems. In this paper, techniques are adopted to minimise the required computational resource for an effective mobile-based speech recognition system. A Dynamic Multi-Layer Perceptron speech recognition technique, capable of running in real time on a state-of-the-art mobile device, has been introduced. Even though a conventional hidden Markov model when applied to the same dataset slightly outperformed our approach, its processing time is much higher. The Dynamic Multi-layer Perceptron presented here has an accuracy level of 96.94% and runs significantly faster than similar techniques.

  相似文献   
5.
In this study, the intermediate rare-earth oxide Gd2O3 (Gd) was substituted in different amounts (x = 0.2–2 mol%) for the formulation of BaTi1-xGdxO3-x/2 (BTGx) dielectric materials. The effect of B-site substitution was confirmed by the additional Raman active A1g octahedral peak at ~835cm-1 strengthened at x ≥ 0.4 mol%. Additionally, properties of 0.9BTG0.007-0.1BA dielectric ceramics were analysed based on the influence of various processing methods as a function of sintering temperature. The focal samples were labelled Method-A (direct-mix) and Method-B (indirect-mix). As the sintering temperature (1075–1200 °C) increased, the 1 kHz response of the ε–T curves of Method-A samples transformed from a single peak to broad-narrow double peaks of high dielectric loss tangent (tan δ). Nonetheless, samples of Method-B possessed a clearly defined transmission electron microscopy (TEM) core-shell structure, flattened double-peak ε-T curves, optimised dielectric properties (ε = ~1563–1851 and tan δ < 1.5% at room temperature), and a wide-ranging temperature behaviour that meets the X8R dielectric standards (ΔC/C25°C < ±15%). The maximum dielectric breakdown strength of Method-B samples reached ~131 kVcm, while the energy storage density was ~0.726 J/cm3 at a maximum efficiency of ~80% at 1100 °C. Thus, exhibiting good potentials for balancing temperature stability with energy storage applications.  相似文献   
6.
Contamination of groundwater by radioactive contaminants can be harmful to the environment. Various prediction models have been adopted to simulate the state of contaminants in the subsurface. Conventional numerical models are simplified by approximation and the model parameters are assumed to be constant, thereby introducing error to the prediction results. Particle and Kalman filters are used in this research to simulate the radioactive contaminant cobalt-57 transport in a subsurface environment by using a two-dimensional advection-dispersion model. A radioactive contaminant concentration was predicted spatially and temporally within boundary conditions. The errors in the prediction results were assessed by using the root-mean-square-error (RMSE) equation. The results show that the Kalman filter performs better than the particle filter when the prediction model is linear. Furthermore, the results from filters are closer to the true value in comparison with the numerical solution, and the filters are capable of reducing the RMSE of the numerical solution by approximately 80%.  相似文献   
7.
8.
9.
Bio-inspired vision sensors are particularly appropriate candidates for navigation of vehicles or mobile robots due to their computational simplicity, allowing compact hardware implementations with low power dissipation. The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号