首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  国内免费   1篇
化学工业   7篇
金属工艺   1篇
机械仪表   5篇
轻工业   1篇
石油天然气   5篇
无线电   2篇
一般工业技术   6篇
冶金工业   1篇
原子能技术   1篇
自动化技术   22篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2004年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
In this paper a novel MEMS tunable CPW antenna with wide tuning range of frequency is presented. The antenna’s frequency tuning range increment is achieved by loading three novel large tuning range capacitors at radiation edge of antenna patch. Two techniques are employed for increasing the capacitors tuning range. First, dual gap technique is used to overcome the pull-in limitation and then two lateral beams are added in order to parallel movement of capacitive plate which increases the capacitance value. The simulation result shows that the resonance frequency tuning range of antenna increased from 1.96 GHz loaded by traditional capacitor to 6.89 GHz using the new capacitor structure. Also in resonance frequency, the antenna has a good impedance matching with transmission line even in high capacitance values.  相似文献   
2.
In this paper, we have fabricated a new microphone using aluminum (Al) slotted perforated diaphragm and back plate electrode, and photoresist (AZ1500) sacrificial layer on silicon wafer. The novelty of this method relies on aluminum diaphragm includes some slots to reduce the effect of residual stress and stiffness of diaphragm for increasing the microphone sensitivity. The acoustic holes are made on diaphragm to reduce the air damping, and avoid the disadvantages of non standard silicon processing for making back chamber and holes in back plate, which are more complex and expensive. Photoresist sacrificial layer is easy to deposition by spin coater and also easy to release by acetone. Moreover, acetone has a high selectivity to resist compared to silicon oxide and Al, thus it completely removes sacrificial resist without incurring significant damage silicon oxide and Al. The measured zero bias capacitance is 17.5 pF, and its pull-in voltage is 25 V. The microphone has been tested with external amplifier and speaker, the external amplifier was able to detect the sound waves from microphone on speaker and oscilloscope. The maximum amplitude of output speech signal of amplifier is 45 mV, and the maximum output of MEMS microphone is 1.125 μV.  相似文献   
3.
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of the method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and the diaphragm to escape and thus reducing acoustical damping in the microphone. Spin-on-glass (SOG) was used as a sacrificial and isolating layer. Backplate is monocrystalline silicon wafer, that it is more stiff. This work will focus on design, simulation, fabrication and characterization of the microphone. The structure has a diaphragm thickness of 3 μm, a diaphragm size of 0.5 mm × 0.5 mm, and an air gap of 1.0 μm. The results show that the pull-in voltage is 105 V, the initial stress of evaporated aluminum diaphragm is around 1500 MPa and the zero bias capacitance of microphone is 2.12 pF. Comparing with the previous works, this microphone has several advantages: the holes have been made on diaphragm, therefore no need of KOH etching to make back chamber, in this way the chip size of each microphone is reduced. The fabrication process uses minimal number of layers and masks to reduce the fabrication cost.  相似文献   
4.
Journal of Porous Materials - Benzimidazole functionalized mesoporous silica nanoparticles immobilized Pd(0)/Pd(II) has been proposed as an efficient catalyst for the one-pot preparation of biaryls...  相似文献   
5.
6.
The formation of mineral scale is a complex problem during the oilfield operations. Scale inhibitors are widely used to prevent salt precipitation within reservoirs, in downhole equipment, and in production facilities. The scale inhibitors not only must have high effectiveness to prevent scale formation, but also have good adsorption–desorption characteristics, which determine the operation duration of the scale inhibitors. This work is focused on the development of a new scale inhibitor for preventing calcium carbonate formation in three different synthetic formation waters. Scale inhibition efficiency, optical density of the solution, induction time of calcium carbonate formation, corrosion activity, and adsorption–desorption ability were investigated for the developed scale inhibitor. The optimum concentration of hydrochloric acid in the inhibitor was determined by surface tension measurement on the boundary layer between oil and the aqueous scale inhibitor solution. The results show that the optimum mass percentage of 5 % hydrochloric acid solution in the inhibitor was in the range of 8 % to 10 %. The new scale inhibitor had high efficiency at a concentration of 30 mg/L. The results indicate that the induction period for calcium carbonate nucleation in the presence of the new inhibitor was about 3.5 times longer than the value in the absence of the inhibitors. During the desorption process at reservoir conditions, the number of pore volumes injected into the carbonate core for the developed inhibitor was significantly greater than the volume of a tested industrial inhibitor, showing better adsorption/desorption capacity.  相似文献   
7.
Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. We investigate deposition process in the region where by changing pressure, the process converts to physical sputtering mode in constant power regime and at a critical pressure between 1.5 to 3 Pa. The estimated value of mean ion energy at this critical point of pressure is close to threshold energy of physical sputtering of copper atoms by acetylene ions. By utilizing this property and by setting initial pressure from 1.3 to 6.6 Pa, nanoparticles copper/carbon composite films were grown with different copper content. The Copper content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from 2% to 97%. The copper content of the surface was obtained by X-ray Photoelectron Spectroscopy (XPS). The results of XPS at different stages of the growth and copper oxidization confirm our suggested mechanism of deposition. Atomic force microscopy (AFM) image and X-ray diffraction (XRD) indicated that copper nanoparticles were formed in our films.  相似文献   
8.
In this work, effect of reservoir temperature (in a range of 50–100°С) on the amount of asphaltene precipitation was determined. Rate of asphaltene precipitation was increased by increasing temperature. Damaged permeability of carbonate core samples was investigated at different asphaltene contents conducting core flood tests. The results showed the experimental and predicted data of damaged permeability ratio due to asphaltene precipitation matched. Moreover, the optimum mass concentration of components of the developed asphaltene inhibitor was determined by measuring interfacial tension on the boundary of oil and inhibitor solution. In addition, the change in the concentration of asphaltene inhibitor was simulated depending on the radial distance to well, production time and type of isotherm.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号