首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
机械仪表   1篇
建筑科学   5篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Journal of Mechanical Science and Technology - III-conditioning at the inverse equation of integral method in ring-core residual stress measurement leads to high stress sensitivity to strain...  相似文献   
2.
In most of the seismic design provision, the concept of strength reduction factor has been developed to account for inelastic behavior of structures under seismic excitations. Most recent studies considered soil–structure interaction (SSI) in inelastic response analysis are mainly based on idealized structural models of single degree‐of‐freedom (SDOF) systems. However, an SDOF system might not be able to well capture the SSI and structural response characteristics of real multiple degrees‐of‐freedom (MDOF) systems. In this paper, through a comprehensive parametric study of 21600 MDOF and its equivalent SDOF (E‐SDOF) systems subjected to an ensemble of 30 earthquake ground motions recorded on alluvium and soft soils, effects of SSI on strength reduction factor of MDOF systems have been intensively investigated. It is concluded that generally, SSI reduces the strength reduction factor of both MDOF and more intensively SDOF systems. However, depending on the number of stories, soil flexibility, aspect ratio and inelastic range of vibration, the strength reduction factor of MDOF systems could be significantly different from that of E‐SDOF systems. A new simplified equation, which is a function of fixed‐base fundamental period, ductility ratio, the number of stories, structure slenderness ratio and dimensionless frequency, is proposed to estimate strength reduction factors for MDOF soil–structure systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
The effects soil‐structure interaction (SSI) and lateral design load‐pattern are investigated on the seismic response of steel moment‐resisting frames (SMRFs) designed with a performance‐based plastic design (PBPD) method through a comprehensive analytical study on a series of 4‐, 8‐, 12‐, 14‐, and 16‐story models. The cone model is adopted to simulate SSI effects. A set of 20 strong earthquake records are used to examine the effects of different design parameters including fundamental period, design load‐pattern, target ductility, and base flexibility. It is shown that the lateral design load pattern can considerably affect the inelastic strength demands of SSI systems. The best design load patterns are then identified for the selected frames. Although SSI effects are usually ignored in the design of conventional structures, the results indicate that SSI can considerably influence the seismic performance of SMRFs. By increasing the base flexibility, the ductility demand in lower story levels decreases and the maximum demand shifts to the higher stories. The strength reduction factor of SMRFs also reduces by increasing the SSI effects, which implies the fixed‐base assumption may lead to underestimated designs for SSI systems. To address this issue, new ductility‐dependent strength reduction factors are proposed for multistory SMRFs with flexible base conditions.  相似文献   
4.
There have been interests to link different cuttings/cavings to various wellbore failure types during drilling. This concept is essential when caliper and image logs are not available. Identification of wellbore failure during drilling gives more chance of immediate actions before wireline logging program. In this paper, an approach was presented based on the image processing of ditch cuttings. This approach uses the sphericity and roundness of cuttings as input data to classify caving types and subsequently determine the dominant failure type. Likewise, common definitions of cavings were discussed initially before a new criterion is suggested. This quantitative criterion was examined by observations from caliper and acoustic image logs as well. The proposed approach and criterion were implemented on ditch cuttings taken from a well in Western Australia. Results indicate that the primary failure is shear failure (breakout) due to high levels of angular cavings. However, another failure due to the fluid invasion into pre-existing fractures was also recorded by blocky cavings.  相似文献   
5.
Pumping in pavement is defined as traffic-induced migration of saturated subgrade fines into overlying granular layers or onto the surface of the pavement, negatively impacting the performance and service life of the pavement. The objective of this study was to assess the capability of geotextile as a separation and filtration layer in reducing subgrade fines migration. A one-third scale Model Mobile Load Simulator, an accelerated pavement testing device, was used to simulate the cyclic traffic loading on a scaled model of a flexible pavement. The results from three scaled pavement tests were compared to evaluate the effectiveness of geotextile separation and filtration in reducing subgrade fines migration. The three tests had identical configurations, except that a geotextile layer was placed at the interface of subgrade and subbase in one of the tests. The lab testing revealed that, under cyclic traffic conditions, the migration of subgrade fines into subbase was significant. However, using a geotextile at the subgrade-subbase interface significantly reduced the subgrade pumping. At the end of the test, the fines that migrated to the subbase, based on % mass of subbase, were 6.39% in the tests without geotextile and 1.81% in the test with geotextile. An approximately 30% reduction was observed in the amount of pavement rutting when using geotextile at the top of the subgrade. The subgrade soil migration in mass percentage increased with the traffic loading cycles, and more migration occurred in the bottom half than in the top half of the subbase. The study concludes that geotextile can be used as an effective means to reduce pumping of subgrade fines in pavement by providing both separation and filtration.  相似文献   
6.
This study attempts to investigate the higher‐mode effects on the constant‐ductility inelastic displacement factors of multi‐degree‐of‐freedom (MDOF) systems considering soil‐structure interaction. These factors were computed for 12,600 two‐dimensional superstructure models of shear buildings and their corresponding equivalent single‐degree‐of‐freedom (ESDOF) systems under 26 ground motions recorded on alluvium and soft soil. An intensive parametric study was carried out for a wide range of non‐dimensional parameters, which completely define the problem. The underlying soil is considered as a homogeneous half‐space based on the concept of cone model. The higher‐mode effects were then investigated through defining the ratio of inelastic displacement factor of MDOF system to that of the corresponding ESDOF one. The influence of soil‐structure interaction key parameters, fundamental period, ductility ratio, the number of stories, and dispersion of the results are evaluated and discussed. Results indicate that as the base becomes very flexible, unlike to the fixed‐base systems, in which the defined ratios are greater than unity, using the inelastic displacement factors of ESDOF models for MDOF ones would result in a remarkable overestimation of maximum inter‐story displacement demand. A new expression is proposed to estimate the ratio of inelastic displacement factor of MDOF soil‐structure systems to that of SDOF counterpart.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号