首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   210篇
  国内免费   1篇
电工技术   12篇
综合类   2篇
化学工业   553篇
金属工艺   35篇
机械仪表   82篇
建筑科学   26篇
能源动力   62篇
轻工业   115篇
水利工程   1篇
石油天然气   1篇
无线电   260篇
一般工业技术   363篇
冶金工业   25篇
原子能技术   27篇
自动化技术   67篇
  2023年   9篇
  2022年   26篇
  2021年   38篇
  2020年   38篇
  2019年   49篇
  2018年   63篇
  2017年   61篇
  2016年   68篇
  2015年   87篇
  2014年   77篇
  2013年   88篇
  2012年   100篇
  2011年   101篇
  2010年   101篇
  2009年   95篇
  2008年   80篇
  2007年   47篇
  2006年   61篇
  2005年   41篇
  2004年   37篇
  2003年   47篇
  2002年   44篇
  2001年   25篇
  2000年   28篇
  1999年   15篇
  1998年   23篇
  1997年   20篇
  1996年   11篇
  1995年   14篇
  1994年   5篇
  1993年   3篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   14篇
  1986年   6篇
  1985年   10篇
  1984年   9篇
  1983年   14篇
  1982年   5篇
  1979年   2篇
  1978年   7篇
  1976年   5篇
  1975年   6篇
  1974年   4篇
  1973年   9篇
  1972年   2篇
  1971年   7篇
  1970年   3篇
排序方式: 共有1631条查询结果,搜索用时 15 毫秒
1.
Food Science and Biotechnology - Various hilling materials (rice hulls, pine sawdust, and perlite) were compared to produce sprout vegetables using beach silvertop (Glehnia littoralis Fr. Schm. ex...  相似文献   
2.
A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.  相似文献   
3.
4.
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter‐species, and inter‐kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)—bacterial extracellular vesicles—with immune‐modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF‐α and IL‐6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM‐1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post‐injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.  相似文献   
5.
A new transparent microscale circulation-type high pressure equilibrium cell with on-line sampling was devised. With this apparatus, experimental solubility of molecularly complex species such as steroids (cholesterol, stigmasterol and ergosterol) and fatty acids (palmitic acid and stearic acid) in supercritical carbon dioxide(sc-C02) were measured. Also, to find an appropriate substance for enhancing both the polarity and the solubility power of the SC-CO2 solvent, we arbitrarily selected three polar substances such as acetone, methanol and water and the effect of these cosolvents on the solubility of solutes in SC-CO2 are examined. The supercritical phase equilibrium data of solute-cosolvent-sc-CO2 systems were quantitatively correlated using a new equation of state based on the lattice fluid theory incorporated with the concept of multibody interaction. We found that the addition of tracer amount of acetone or methanol to SC-CO2 enhances the solubility of all solutes about thirty to sixty times when compared with the case of pure sc-CO2 However, for the case of cosolvent water, no further enhancement of the solubility of solutes was realized. Also, the versatile fittability of the equation of state proposed in this work was demonstrated with the newly measured ternary supercritical equilibrium data.  相似文献   
6.
An experimental study was conducted to investigate the rheological behavior of a heterogeneous polymer blend system consisting of nylon 6 and an ethylene-based multifunctional polymer (CXA 3101, DuPont Co.). For comparison purposes, we also investigated the rheological behavior of two additional blend systems, namely blends of nylon 6 with a chemically modified polyolefin (Plexar 3, Chemplex Co.) and blends of nylon 6 with ethylene–vinyl acetate copolymer (EVA). We have investigated the thermal and thermomechanical behavior of the blend systems, using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Also, we have attempted to identify the chemical structure of the functional groups present in the CXA 3101 and Plexar 3 resins, using infrared (IR) spectroscopy. This information has enabled us to interpret the observed rheological behavior. Furthermore, we have used both optical and scanning electron microscopies to investigate the state of dispersion of the constituent components in each of the blend systems. We have concluded that, during melt blending, chemical reactions have taken place between carboxyl or anhydride groups present in the CXA 3101 resin and the amino end groups of the nylon 6, forming a graft copolymer which then acted as an “interfacial agent.”  相似文献   
7.
A practical model for a single-electron transistor (SET) was developed based on the physical phenomena in realistic Si SETs, and implemented into a conventional circuit simulator. In the proposed model, the SET current calculated by the analytic model is combined with the parasitic MOSFET characteristics, which have been observed in many recently reported SETs formed on Si nanostructures. The SPICE simulation results were compared with the measured characteristics of the Si SETs. In terms of the bias, temperature, and size dependence of the realistic SET characteristics, an extensive comparison leads to good agreement within a reasonable level of accuracy. This result is noticeable in that a single set of model parameters was used, while considering divergent physical phenomena such as the parasitic MOSFET, the Coulomb oscillation phase shift, and the tunneling resistance modulated by the gate bias. When compared to the measured data, the accuracy of the voltage transfer characteristics of a single-electron inverter obtained from the SPICE simulation was within 15%. This new SPICE model can be applied to estimating the realistic performance of a CMOS/SET hybrid circuit or various SET logic architectures.  相似文献   
8.
Core–shell type nanoparticles of poly(L ‐lactide)/poly(ethylene glycol) (LE) diblock copolymer were prepared by a dialysis technique. Their size was confirmed as 40–70 nm using photon correlation spectroscopy. The 1H‐NMR analysis confirmed the formation of core–shell type nanoparticles and drug loading. The particle size, drug loading, and drug release rate of the LE nanoparticles were slightly changed by the initial solvents that were used. The drug release behavior of LE core–shell type nanoparticles showed an initial burst during the first 12 h and then a sustained release until 100 h. The degradation behavior of LE block copolymer nanoparticles was divided into three phases: the initial rapid degradation phase, the stationary phase, and the rapid degradation phase until complete degradation. It was suggested that lidocaine release kinetics were predominantly governed by the diffusion mechanism in the initial burst phase and after that by both of the diffusion and degradation mechanisms. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2625–2634, 2002  相似文献   
9.
In this work, a model predictive control method combined with fuzzy identification, is applied to the design of the thermoelectric (TE) power control in the SP-100 space reactor. The future TE power is predicted by using the fuzzy model identified by a subtractive clustering method of a fast and robust algorithm. The objectives of the proposed fuzzy model predictive controller are to minimize both the difference between the predicted TE power and the desired power, and the variation of control drum angle that adjusts the control reactivity. Also, the objectives are subject to maximum and minimum control drum angle and maximum drum angle variation speed. The genetic algorithm that is effective in accomplishing multiple objectives is used to optimize the fuzzy model predictive controller. A lumped parameter simulation model of the SP-100 nuclear space reactor is used to verify the proposed controller. The results of numerical simulations to check the performance of the proposed controller show that the TE generator power level controlled by the proposed controller could track the target power level effectively, satisfying all control constraints.  相似文献   
10.
In this paper damage propagation during metal forming process is investigated with the concept of continuum damage mechanics. An isotropic damage model based on the theory of materials of type N is adopted to describe the damage process of a ductile material with large elasto-viscoplastic deformation. To solve the finite elasto-viscoplasticity problem, a reasonable kinematic strain measure for largely deformed solids is used and the damage constitutive equations based on thermodynamical framework are developed. The stiffness degradation of the loaded material is chosen as a damage measure. An extended interior penalty method is used to impose the contact condition on the boundary. The highly nonlinear equilibrium equations are reduced to the incremental weak form and approximated by the total Lagrangian finite element method. The displacement control method along with the modified Riks' continuation technique based on displacement parameter is used to solve the incremental iterative equations. As numerical examples, upsetting, backward extrusion and punch problems are simulated and the results of damage propagation and J2 stress contours with and without damage are presented. For punch problems, spring back and residual stresses are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号