首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   1篇
机械仪表   2篇
能源动力   1篇
无线电   5篇
一般工业技术   3篇
自动化技术   2篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2019年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  1997年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Journal of Mechanical Science and Technology - This paper establishes the vibrating-mesh ultrasonic mist-generation of highly viscous biodegradable oils as a novel implementation for MQL (minimum...  相似文献   
2.
As eidetic signal recognition has become important, displaying mechanical signals visually has imposed huge demands for simple readability and without complex signal processing. Such visualization of mechanical signals is used in delicate urgent medical or safety‐related industries. Accordingly, chromic materials are considered to facilitate visualization with multiple colors and simple process. However, the response and recovery time is very long, such that rapid regular signals are unable to be detected, i.e., physiological signals, such as respiration. Here, the simple visualization of low strain ≈2%, with ultrasensitive crack‐based strain sensors with a hierarchical thermochromic layer is suggested. The sensor shows a gradient color change from red to white color in each strain, which is attributed to the hierarchical property, and the thermal response (recovery) time is dramatically minimized within 0.6 s from 45 to 37 °C, as the hierarchical membrane is inspired by termite mounds for efficient thermal management. The fast recovery property can be taken advantage of in medical fields, such as monitoring regular respiration, and the color changes can be delicately monitored with high accuracy by software on a mobile phone.  相似文献   
3.
Underwater visual inspection is an important task for checking the structural integrity and biofouling of the ship hull surface to improve the operational safety and efficiency of ships and floating vessels. This paper describes the development of an autonomous in‐water visual inspection system and its application to visual hull inspection of a full‐scale ship. The developed system includes a hardware vehicle platform and software algorithms for autonomous operation of the vehicle. The algorithms for vehicle autonomy consist of the guidance, navigation, and control algorithms for real‐time and onboard operation of the vehicle around the hull surface. The environmental perception of the developed system is mainly based on optical camera images, and various computer vision and optimization algorithms are used for vision‐based navigation and visual mapping. In particular, a stereo camera is installed on the underwater vehicle to estimate instantaneous surface normal vectors, which enables high‐precision navigation and robust visual mapping, not only on flat areas but also over moderately curved hull surface areas. The development process of the vehicle platform and the implemented algorithms are described. The results of the field experiment with a full‐scale ship in a real sea environment are presented to demonstrate the feasibility and practical performance of the developed system.  相似文献   
4.
5.
Optical methods for measuring of the emission spectra of oscillator circuits operating in the 400-600 GHz range are described. The emitted power from patch antennas included in the circuits is measured by placing the circuit in the source chamber of a Fourier-transform interferometric spectrometer. The results show that this optical technique is useful for measuring circuits pushing the frontier in operating frequency. The technique also allows the characterization of the circuit by measuring the power radiated in the fundamental and in the harmonics. This capability is useful for oscillator architectures designed to cancel the fundamental and use higher harmonics. The radiated power was measured using two techniques: direct measurement of the power by placing the device in front of a bolometer of known responsivity, and by comparison to the estimated power from blackbody sources. The latter technique showed that these circuits have higher emission than blackbody sources at the operating frequencies, and, therefore, offer potential spectroscopy applications.  相似文献   
6.
7.
Improving optical property is critical for optimizing the power conversion efficiency of organic solar cells. In the present research, we show that modification of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer with GeO2 leads to 15% improvement of power conversion efficiency in a polymer solar cells through enhancement of short circuit currents. Modified PEDOT:PSS layer with optimized concentration of GeO2 assists active layer absorbing much light by playing a role of optical spacer. Using AFM and grazing incidence X-ray diffraction (GIXD) data, we also present the evidence that an addition of GeO2 does not affect crystallinity of active layer.  相似文献   
8.
Microphysiological systems (MPSs), based on microfabrication technologies and cell culture, can faithfully recapitulate the complex physiology of various tissues. However, 3D tissues formed using MPS have limitations in size and accessibility; their use in regenerative medicine is, therefore, still challenging. Here, an MPS-inspired scale-up vascularized engineered tissue construct that can be used in regenerative medicine is designed. Endothelial cell-laden hydrogels are sandwiched between two through-hole membranes. The microhole array in the through-hole membranes enables the molecular transport across the hydrogel layer, allowing long-term cell culture. Furthermore, the time-controlled delamination of through-hole membranes enables the harvesting of cell-cultured hydrogel constructs without damaging the capillary network. Importantly, when the tissue constructs are implanted in a mouse ischemic model, they protect against necrosis and promoted functional recovery to a greater extent than implanted cells, hydrogels, and simple gel–cell mixtures.  相似文献   
9.
Additive manufacturing-also known as 3D printing-has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures.However,the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir,which can contribute significantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle.Here,we propose a dielectrophoresis(DEP)-based material-selective deposition and sorting technique using a pipette-based quartz tuning fork(QTF)-atomic force microscope(AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions.We used Au and silica nanoparticles for sorting and obtained 95% accuracy for spatial separation,which confirmed the surfaceenhanced Raman spectroscopy(SERS).To validate the scheme,we also performed a simulation for the system and found qualitative agreement with the experimental results.The method that combines DEP,pipette-based AFM,and SERS may widely expand the unique capabilities of 3D printing and nano-micro patterning for multi-material patterning,materials sorting,and diverse advanced applications.  相似文献   
10.
The laser-induced sintering of TiO2 nanoparticles into larger nanospheres is accelerated by adsorbed silver particles. For the same weight fraction of silver, silver nanoparticles of 5 nm in diameter modify TiO2 nanoparticles more effectively than those of 1.5 nm do, suggesting that the photocatalysis of TiO2 nanoparticles as well as their stability is highly dependent on the sizes, the shapes, and the distribution of adsorbed metal nanoparticles. The photoexcited electrons of TiO2 nanoparticles are quenched at trap sites and surface states by transfer to the conduction band of silver, implying that the presence of adsorbed silver nanoparticles enhances the photocatalytic effect of TiO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号