首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
电工技术   1篇
金属工艺   3篇
机械仪表   2篇
一般工业技术   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Ru-AlN thin films were suggested as a novel multifunctional heating resistor film for non-passivated type thermal inkjet printer devices. Ru-AlN thin films were prepared by plasma-enhanced atomic layer deposition in order to intermix Ru and AlN precisely. When the Ru intermixing ratios were optimized, Ru-AlN films showed a favorable electrical resistivity (from 490.9 to 75.3 μΩcm) and minimized temperature coefficient of resistance (TCR) values (from 335 to 360 ppm/K). Moreover, the Ru-AlN films showed a strong oxidation resistant as compared with commercially used TaN0.8 films because the prepared Ru-AlN thin films had a typical nanocomposite structure. By applying electrical pulses to the heater device using Ru-AlN thin films for a Joule heating, a reliable operation was also proven.  相似文献   
2.
Cr-Al-Si-N coatings were deposited on SUS 304 substrate by a hybrid coating system. A Cr interlayer was introduced between Cr-Al-Si-N coating and SUS 304 substrate to improve the coating adherence. The effects of Cr interlayer on the microhardness, adhesion, and tribological behavior of Cr-Al-Si-N coatings were systematically investigated. The results indicate that the microhardness of the Cr-Al-Si-N coatings gradually deceases with increasing thickness of Cr interlayers. The adhesion between Cr-Al-Si-N and SUS 304 substrate is improved by addition of the Cr interlayers. A peak critical load of ~50 N is observed for the coating containing Cr interlayer of 60 nm as compared ~ 20 N for the coating without Cr interlayer. The thicker Cr interlayers result in reduced critical load values. Moreover, the wear resistance of the Cr-Al-Si-N coatings is greatly enhanced by introducing the Cr interlayer with thickness of 60 nm in spite of the decreased microhardness. The friction coefficient of the coating system is also moderately reduced.  相似文献   
3.
Ru-TiN thin films were prepared from bis(ethylcyclopentadienyl)ruthenium and tetrakis(dimethylamino)titanium using plasma-enhanced atomic layer deposition (PEALD). The Ru and TiN were deposited sequentially to intermix TiN with Ru. The composition of Ru-TiN films was controlled precisely by changing the number of deposition cycles allocated to Ru, while fixing the number of deposition cycles allocated to TiN. Although both Ru and TiN thin films have a polycrystalline structure, the microstructure of the Ru-TiN films changed from a TiN-like polycrystalline structure to a nanocrystalline on increasing the Ru intermixing ratio. Moreover, the electrical resistivity of the Ru0.67-TiN0.33 thin films is sufficiently low at 190 microomega x cm and was maintained even after O2 annealing at 750 degrees C. Therefore, Ru-TiN thin films can be utilized as a oxygen diffusion barrier material for future dynamic (DRAM) and ferroelectric (FeRAM) random access memory capacitors.  相似文献   
4.
Si3N4/SiC纳米复合材料由于具有优良的力学和热性能,广泛应用于涡轮发动机、热交换器和其他复杂情况中。然而,不添加添加剂很难制备出Si3N4/SiC复合材料。添加剂在烧结过程形成液相从而促进复合材料的致密化。然而,添加剂的存在降低了复合材料的高温力学性能。通常在不添加添加剂的情况下,采用电场辅助烧结,利用聚合物前体路线制备Si3N4/SiC复合材料。本研究中,在无添加剂、温度1700°C、真空50MPa条件下,热压烧结2h,利用非晶前体路线成功制备了六方-BN致密化的Si3N4/SiC复合材料。聚合物前驱体和BN的作用减少了的SiC含量。并对相变、致密化、微观组织和力学性能进行了讨论。  相似文献   
5.
Tribological properties of adsorbed water layer on solid surface in sliding contact have not yet been fully understood. In this regard, it is important to better understand how surface hydrophilicity and humidity influence the tribological behavior of adsorbed water-mediated microcontact. In this study, we investigated the influence of adsorbed water layer and capillary force on friction as a function of relative humidity for silicon surfaces with different water affinity. Friction of the silicon surface with different water affinity was examined under various humid environments in a wearless sliding condition (low contact pressure) against a glass sphere. Numerical analysis was also conducted to calculate capillary force and interfacial shear strength for each surface as a function of relative humidity. The friction of the hydrophobic Si surface was low and stable, and almost independent of relative humidity whereas that of the hydrophilic surfaces were significantly influenced by relative humidity. These behaviors were explained in terms of capillary wetting and the role of confined water layer in the contact area. The influence of confined water layer became more dominant over capillary force as relative humidity increased. There was a good correlation between the calculated shear strength and the measured friction force for all surfaces regardless of their hydrophilicity and humidity condition.  相似文献   
6.
Cr-Al-Si-N coatings were deposited on SUS 304 substrate by a hybrid coating system. A Cr interlayer was introduced between Cr-Al-Si-N coating and SUS 304 substrate to improve the coating adherence. The effects of Cr interlayer on the microhardness, adhesion, and tribological behavior of Cr-Al-Si-N coatings were systematically investigated. The results indicate that the microhardness of the Cr-Al-Si-N coatings gradually deceases with increasing thickness of Cr interlayers. The adhesion between Cr-Al-Si-N and SUS 304 substrate is improved by addition of the Cr interlayers. A peak critical load of ~50 N is observed for the coating containing Cr interlayer of 60 nm as compared ~ 20 N for the coating without Cr interlayer. The thicker Cr interlayers result in reduced critical load values. Moreover, the wear resistance of the Cr-Al-Si-N coatings is greatly enhanced by introducing the Cr interlayer with thickness of 60 nm in spite of the decreased microhardness. The friction coefficient of the coating system is also moderately reduced.  相似文献   
7.
Tribological Behavior of Grafted Polymer Gel Nanocoatings   总被引:2,自引:0,他引:2  
Julthongpiput  D.  Ahn  Hyo-Sok  Kim  Doo-In  Tsukruk  V.V. 《Tribology Letters》2002,13(1):35-40
A robust molecular lubrication layer on a silicon surface has been fabricated from a grafted polymer gel with thickness below 10 nm. A functionalized rubber-glassy block-copolymer was chemically grafted to a silicon oxide surface and its tribological performance was enhanced by vapor saturation with a minute amount of alkyl-based paraffinic oil. A combination of tribological measurements and Auger electron spectroscopy was used to monitor the polymer layer wearing behavior. We observed that unlike a dry polymer layer and a classic boundary lubricant, an alkylsilane self-assembled monolayer, the polymer gel coating exhibited a steady friction response, a very low value of the coefficient of friction, and possessed much higher wear-resistance.  相似文献   
8.
Nanocrystalline ZrB 2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as reactive magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe microanalysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, the influence of nitrogen flow ratio on the film microstructure and characteristics were investigated systematically, including the deposition rate, chemical compositions, phase constituents, grain size, chemical bonding, as well as cross-sectional morphologies. Meanwhile, the hardness and adhesion of above films were also evaluated by micro-indentation method and a scratch tester. With increasing the nitrogen flow ratio, the deposition rate of above films decreased approximately linearly, whereas the contents of N and O in the films increased gradually and tended to saturation. Moreover, the film microstructure was also altered gradually from a fine columnar microstructure to a featureless glass-structure. As the nitrogen flow ratio was 11.7%, the Zr-B-O-N film possessed an typical nanocomposite structure and presented good mechanical properties. During the process of reactive sputtering of metal borides, the introduction of nitrogen can show a pronounced suppression of columnar grain growth and strong nanocomposite structure forming ability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号