首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86923篇
  免费   1230篇
  国内免费   411篇
电工技术   845篇
综合类   2316篇
化学工业   12239篇
金属工艺   4845篇
机械仪表   3142篇
建筑科学   2274篇
矿业工程   571篇
能源动力   1226篇
轻工业   4242篇
水利工程   1313篇
石油天然气   376篇
无线电   9462篇
一般工业技术   16745篇
冶金工业   3018篇
原子能技术   286篇
自动化技术   25664篇
  2023年   33篇
  2022年   119篇
  2021年   172篇
  2020年   116篇
  2019年   129篇
  2018年   14559篇
  2017年   13496篇
  2016年   10075篇
  2015年   718篇
  2014年   393篇
  2013年   461篇
  2012年   3342篇
  2011年   9630篇
  2010年   8431篇
  2009年   5711篇
  2008年   6916篇
  2007年   7904篇
  2006年   230篇
  2005年   1274篇
  2004年   1201篇
  2003年   1221篇
  2002年   597篇
  2001年   152篇
  2000年   223篇
  1999年   92篇
  1998年   194篇
  1997年   126篇
  1996年   98篇
  1995年   67篇
  1994年   44篇
  1993年   37篇
  1992年   26篇
  1991年   31篇
  1990年   16篇
  1988年   22篇
  1969年   24篇
  1968年   44篇
  1967年   34篇
  1966年   44篇
  1965年   44篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
2.
Here we report some recent biophysical issues on the preparation of solute-filled lipid vesicles and their relevance to the construction of “synthetic cells.” First, we introduce the “semi-synthetic minimal cells” as the liposome-based cell-like systems, which contain a minimal number of biomolecules required to display simple and complex biological functions. Next, we focus on recent aspects related to the construction of synthetic cells. Emphasis is given to the interplay between the methods of synthetic cell preparation and the physics of solute encapsulation. We briefly introduce the notion of structural and compositional “diversity” in synthetic cell populations.  相似文献   
3.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
4.
5.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
6.
7.
Mobile software applications have to cope with a particular environment that involves small size, limited resources, high autonomy requirements, competitive business models and many other challenges. To provide development guidelines that respond to these needs, several practices have been introduced; however, it is not clear how these guidelines may contribute to solve the issues present in the mobile domain. Furthermore, the rapid evolution of the mobile ecosystem challenges many of the premises upon which the proposed practices were designed. In this paper, we present a survey of the literature on software assurance practices for mobile applications, with the objective of describing them and assessing their contribution and success. We identified, organized and reviewed a body of research that spans in three levels: software development processes, software product assurance practices, and software implementation practices. By carrying out this literature survey, we reviewed the different approaches that researchers on Software Engineering have provided to address the needs that raise in the mobile software development arena. Moreover, we review the evolution of these practices, identifying how the constant changes and modernization of the mobile execution environment has impacted the methods proposed in the literature. Finally, we introduced discussion on the application of these practices in a real productive setting, opening an area for further research that may determine if practitioners have followed the proposed assurance paradigms.  相似文献   
8.
This paper presents an integrated passive damping approach in hybrid metal-CFRP parts for structural applications. In this concept a viscoelastic material is embedded in the joint zone of the hybrid component. To examine the connection strength single-lap-joint specimens were produced and tested and the influence of the used material combinations, different surface structures, and different process parameters i.e. the moment of cross-linking were evaluated. Afterwards, the metal-CFRP hybrids were tested in quasi-static tests to assess their connection strength and failure behaviour. Dynamic cyclic tensile tests with step-wise increased loading conditions were performed to determine the specimens damping behaviour and to estimate their fatigue performance. Finally, these results are compared to a state of the art metal-CFRP hybrid with rivets connecting both materials.  相似文献   
9.
In this paper, we consider the classical finite mixture model, which is an effective tool for modeling lifetime distributions for random samples from heterogeneous populations. We discuss new results on stochastic comparison for two finite mixtures when each of them is drawn from one of the following semiparametric families, i.e., proportional hazards, accelerated lifetime and proportional reversed hazards.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号