首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
电工技术   1篇
化学工业   5篇
金属工艺   2篇
机械仪表   1篇
无线电   2篇
一般工业技术   3篇
冶金工业   4篇
自动化技术   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
The energy consumptions growth, the upward interest for environmental sustainability and the technological evolution carry to the necessity to review the planning criteria of urban mobility systems in large cities and metropolitan areas. With this aim, new studies and projects are in progress, especially dealing with the power systems for metro-transit lines and surface electric vehicles. In this framework, the authors perform a study that, from an overview about the main energy management issues connected to the city transport, provides an innovative proposal for the design of sustainable urban mobility system: the integration of the metro-lines with surface plug-in electric vehicles. The present paper includes the energy analysis results, obtained by an application on a real case study of an home-made simulation software, describes the proposal in terms of power systems architecture and business models, pointing out the potential advantages that its implementation could give in terms of energy saving, environmental sustainability and reduced economic impact, as a result of the maximum exploitation of existing electric power plant.  相似文献   
2.
The evolution of stress-induced martensitic transformation in front of the crack tip in a NiTi alloy is analyzed in this investigation, by two-dimensional finite element simulations of single edge-crack specimens. In particular, the transformation start and finish contours, i.e., the boundaries of the transformation zone, were obtained by using plasticity concepts, and the effects of the temperature were taken into account by using the Clausius-Clapeyron relation. Furthermore, comparisons between numerical and analytical results, obtained by Irwin’s modified linear elastic fracture mechanics relations, were carried out. These comparisons show that a good agreement in terms of the martensite start and finish sizes is obtained; moreover, the analytic approach could be able to describe the stress field in the crack tip region outside the phase transformation zone, i.e., in the austenitic region, but a proper equation to estimate the effective crack length should be found. To this aim, further studies should be carried out.  相似文献   
3.
The nanoManipulator system adds a virtual-reality interface to an atomic-force microscope (AFM), thus providing a tool that can be used by scientists to image and manipulate nanometer-sized molecular structures in a controlled manner. As the AFM tip scans the sample, the tip-sample interaction forces are monitored, which, in turn, can yield information about the frictional, mechanical, material, and topological properties of the sample. Computer graphics are used to reconstruct the surface for the user, with color or contours overlaid to indicate additional data sets. Moreover, a force feedback stylus, which is connected to the tip via software, allows the user to directly interact with the macromolecules. This system is being used to investigate carbon nanotubes, DNA, fibrin, adeno- and tobacco mosaic virus. It is now also possible to insert this system into a scanning electron microscope which provides the user with continuous images of the sample, even while the AFM tip is being used for manipulations  相似文献   
4.
The effects of damages produced by implantation of Te, Er, Hg, and Pb ions into undoped (100) GaSb single crystals and their recovery by Rutherford backscattering (RBS)/channeling were investigated. The implantations with dosages in the range of 1013 to 1015 ions/cm2 were carried out at liquid nitrogen temperature, at energies corresponding to a projected range of 447Å in GaSb. Near surface damage equivalent to that of an amorphous layer was observed even at lower doses. The samples were annealed at 600°C for different durations, with the Te implanted sample of the lowest dosage exhibiting the best recovery (Χmin = 11%) compared to others. This value of Χmin nearly corresponds to that of the virgin crystal. Examination of the surface morphology as a function of mass, dosage, and annealing duration revealed that it was strongly influenced by the dosage of the implanted ions.  相似文献   
5.
In this study, the effects of Nd:YAG laser welding on the fracture behavior of Ni-rich nickel-titanium sheets are analyzed by experimental investigations. The welding was carried out in open air conditions by using a special shielding/clamping system to avoid the chemical contamination of the molten zone and the formation of hot cracks. Mechanical tests of standard dog bone-shaped and single edge crack specimens were carried out to measure the stress-strain response and the fracture resistance of both the base and the welded materials. Furthermore, scanning electron microscopy observations of the fracture surfaces were carried out in order to better understand the failure mechanisms. Finally, systematic comparative studies between base and laser-welded materials were carried out.  相似文献   
6.
Understanding the relative motion of objects in contact is essential for controlling macroscopic lubrication and adhesion, for comprehending biological macromolecular interfaces, and for developing submicrometre-scale electromechanical devices. An object undergoing lateral motion while in contact with a second object can either roll or slide. The resulting energy loss and mechanical wear depend largely on which mode of motion occurs. At the macroscopic scale, rolling is preferred over sliding, and it is expected to have an equally important role in the microscopic domain. Although progress has been made in our understanding of the dynamics of sliding at the atomic level, we have no comparable insight into rolling owing to a lack of experimental data on microscopic length scales. Here we produce controlled rolling of carbon nanotubes on graphite surfaces using an atomic force microscope. We measure the accompanying energy loss and compare this with sliding. Moreover, by reproducibly rolling a nanotube to expose different faces to the substrate and to an external probe, we are able to study the object over its complete surface.  相似文献   
7.
The nanoManipulator system adds a virtual reality interface to an atomic force microscope (AFM), thus providing a tool that enables the user not only to image but also to manipulate nanometer-sized molecular structures. As the AFM tip scans the surface of these structures, the tip-sample interaction forces are monitored, which in turn provide information about the frictional, mechanical, and topological properties of the sample. Computer graphics are used to reconstruct the surface for the user, with color or contours overlaid to indicate additional data sets. Moreover, by means of a force-feedback pen, which is connected to the scanning tip via software, the user can touch the surface under investigation to feel it and to manipulate objects on it. This system has been used to investigate carbon nanotubes, fibrin, DNA, adenovirus, and tobacco mosaic virus. Nanotubes have been bent, translated, and rotated to understand their mechanical properties and to investigate friction on the molecular level. AFM lithography is being combined with the nanoManipulator to investigate the electromechanical properties of carbon nanotubes. The rupture forces of fibrin and DNA have been measured. This article discusses how some of the graphics and interface features of the nanoManipulator made these novel investigations possible. Visitors have used the system to examine chromosomes, bacterial pili fibers, and nanochain aggregates (NCAs). Investigators are invited to apply to use the system as described on the web at http:@www.cs.unc.edu/Research/nano/doc/biovis it.html.  相似文献   
8.
We present observations of resonance behavior in a torsional nanoelectromechanical device built with an individual single-walled carbon nanotube. The effect of applied torsional strain on the transport properties of the nanotube provides an electrical signal transducer and hence a means of measuring oscillation amplitude, resonance frequency, and quality factor. The mechanical resonance is confirmed by imaging and the electromechanical signal is compared to quasi-static measurements.  相似文献   
9.
Amyloid aggregation of human ataxin-3 (ATX3) is responsible for spinocerebellar ataxia type 3, which belongs to the class of polyglutamine neurodegenerative disorders. It is widely accepted that the formation of toxic oligomeric species is primarily involved in the onset of the disease. For this reason, to understand the mechanisms underlying toxicity, we expressed both a physiological (ATX3-Q24) and a pathological ATX3 variant (ATX3-Q55) in a simplified cellular model, Escherichia coli. It has been observed that ATX3-Q55 expression induces a higher reduction of the cell growth compared to ATX3-Q24, due to the bacteriostatic effect of the toxic oligomeric species. Furthermore, the Fourier transform infrared microspectroscopy investigation, supported by multivariate analysis, made it possible to monitor protein aggregation and the induced cell perturbations in intact cells. In particular, it has been found that the toxic oligomeric species associated with the expression of ATX3-Q55 are responsible for the main spectral changes, ascribable mainly to the cell envelope modifications. A structural alteration of the membrane detected through electron microscopy analysis in the strain expressing the pathological form supports the spectroscopic results.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号