首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
机械仪表   1篇
能源动力   3篇
无线电   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Zoomable video allows users to selectively zoom and pan into regions of interest within the video for viewing at higher resolutions. Such interaction requires dynamic cropping of RoIs on the source video. We have previously explored two different ways of encoding and transmitting video to support dynamic RoI cropping: (i) Monolithic streaming uses a standard video encoder to encode the video. When an RoI is requested, the bits belonging to the RoI along with other bits required to decode the RoIs (due to encoding dependencies) are transmitted. (ii) Tile streaming divides regions in the standard video into rectangular tiles that are encoded independently. The tiles that intersect with a requested RoI are transmitted. In this paper, we consider how the bandwidth needed to transmit the RoIs can be reduced by carefully encoding the source video for each of the two encoding schemes. The goal is to support bandwidth efficient compressed domain RoI cropping in the context of virtual zoom and pan by tuning encoder parameters. Our key idea is to exploit user access patterns to the RoIs, and encode different regions of the video with different encoding parameters based on the popularity of the region. We show that our encoding method can reduce the expected bandwidth by up to 43% in the test video sequence which we have used.  相似文献   
2.
This paper presents an investigation of two well‐known aerodynamic phenomena, rotational augmentation and dynamic stall, together in the inboard parts of wind turbine blades. This analysis is carried out using the following: (1) the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark's in‐house flow solver Ellipsys3D; and (3) data from a reduced order dynamic stall model that uses rotationally augmented steady‐state polars obtained from steady Phase VI experimental sequences, instead of the traditional two‐dimensional, non‐rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared with three select cases of the N‐sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two‐dimensional flow to be investigated. Results indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current two‐dimensional dynamic stall model as used in blade element momentum‐based aeroelastic codes may provide a reasonably accurate representation of three‐dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Journal of Mechanical Science and Technology - The performance of a regenerative shock absorber is not only determined by the amount of the regenerated energy (electricity), but also determined by...  相似文献   
4.
The purpose of this Letter to the Editor is to present a discussion on the physics of rotational augmentation based on existing work. One of the latest works by Gross et al. (2012) is highlighted here, and its conclusions are discussed. Based on the existing understanding of rotational augmentation, some inconsistencies seem to be present in the analysis of Gross et al. These are identified and discussed here, along with a brief survey of relevant literature. Copyright 2013 John Wiley & Sons, Ltd.  相似文献   
5.
This work presents an analysis of data from existing as well as new full‐rotor computational fluid dynamics computations on the MEXICO rotor, with focus on the flow around the inboard parts of the blades. The boundary layer separation characteristics on the airfoil sections in the inboard parts of the rotor are analysed using the pressure and the skin friction data at a range of angles of attack. These data are used to gain insight on the relative behaviour of separated boundary layers in 3D flow compared with 2D flow. It has been found that separation on airfoils in rotating flows is different from that in 2D flows in two respects: (i) there is a chord‐wise postponement (or delay) of the separation point, and (ii) the angle of attack at which separation is initiated is higher in 3D compared with 2D. Comments are made on the mechanism of stall delay, and the main differences between the skin friction and pressure distribution behaviours in 2D and 3D rotating flows are highlighted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号