首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
机械仪表   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Cross-flow over tube banks is commonly encountered in practice in heat transfer equipments. The local and average heat transfer characteristics for staggered tube banks are investigated in the present study. A naphthalene sublimation technique is employed to obtain the local heat transfer coefficients, and experiments are performed for various tube spacings, tube locations and Reynolds numbers. The variation of the local heat transfer coefficients is quite different from the first tube to the third tube, but they are similar afterwards. The average Nusselt number increases more than 30% and 65% on the second and third tubes, respectively, in comparison with that of the first tube. And the empirical correlations for average heat transfer coefficients are compared with the conventional heat transfer correlations.  相似文献   
2.
Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号