首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   17篇
电工技术   13篇
化学工业   53篇
金属工艺   4篇
机械仪表   16篇
建筑科学   8篇
能源动力   7篇
轻工业   12篇
水利工程   5篇
石油天然气   1篇
无线电   35篇
一般工业技术   54篇
冶金工业   1篇
原子能技术   2篇
自动化技术   43篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   15篇
  2019年   19篇
  2018年   25篇
  2017年   12篇
  2016年   9篇
  2015年   27篇
  2014年   15篇
  2013年   19篇
  2012年   16篇
  2011年   14篇
  2010年   9篇
  2009年   13篇
  2008年   7篇
  2007年   1篇
  2006年   1篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有254条查询结果,搜索用时 31 毫秒
1.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   
2.
Basic insulating refractories were fabricated by the pressing route using dead-burned magnesia, pure calcined alumina, expanded perlite, and calcined waste serpentine as starting raw materials in four compositions from F1 to F4. Periclase and forsterite were major phases in F1 and F2 compositions, while spinel was also detected in the XRD patterns of F3 and F4 samples. Quantitative phase analysis showed that F4 sample sintered at 1450?°C has the highest forsterite content among all other samples. On the other hand, it has lower thermal conductivity compared to F1 to F3, and even lower than aluminosilicate IFBs with the same bulk density. It is concluded that forsterite is a highly insulating material, compared to periclase, corundum, periclase-spinel, aluminosilicates, such as mullite, etc.  相似文献   
3.
We have studied the effect of the thickness of the multiplication region on the noise performance characteristics of avalanche photodiodes (APD's). Our simulation results are based on a full band Monte Carlo model with anisotropic threshold energies for impact ionization. Simulation results suggest that the well known McIntyre expression for the excess noise factor is not directly applicable for devices with a very thin multiplication region. Since the number of ionization events is drastically reduced when the multiplication layer is very thin, the “ionization coefficient” is not a good physical parameter to characterize the process. Instead “effective quantum yield,” which is a measure of the total electron-hole pair generation in the device, is a more appropriate parameter to consider. We also show that for the device structure considered here, modeling the excess noise factor using a “discrete Bernoulli trial” model as opposed to the conventional “continuum theory” produces closer agreement to experimental measurements. Our results reinforce the understanding that impact ionization is a strong function of carrier energy and the use of simplified field-dependent models to characterize this high energy process fails to accurately model this phenomenon  相似文献   
4.
This letter presents for the first time, the experimentally determined majority carrier mobilities in the accumulation layer of a MOSFET for both p-type and n-type channel doping for a wide range of doping concentrations. The measured carrier mobility is observed to follow a universal behavior at high transverse fields, similar to that observed for minority carriers in MOS inversion layers. At the higher doping levels, the effective mobility for majority carriers at low to moderate transverse fields is found to be very close to the bulk mobility. This is believed to be due to carrier screening of the ionized impurity scattering which dominates at the higher doping concentrations  相似文献   
5.
Simulations of two-dimensional (2D) flow past a circular cylinder with the smoothed particle hydrodynamics (SPH) method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a viscous liquid with weak compressibility. Boundary conditions, such as a no-slip solid wall, inflow and outflow, and periodic boundaries, were employed to resemble the physical problem. A sensitivity analysis, which has been rarely addressed in previous studies, was conducted on several SPH parameters. Hence, the effects of distinct parameters, such as the kernel choices and the domain dimensions, were investigated with the goal of obtaining highly accurate results. A range of Reynolds numbers (1–500) was simulated, and the results were compared with existing experimental data. It was observed that the domain dimensions and the resolution of SPH particles, in comparison to the obstacle size, affected the obtained drag coefficient significantly. Other parameters, such as the background pressure, influenced the transient condition, but did not influence the steady state at which the drag coefficient was determined.  相似文献   
6.
Journal of Computational Electronics - We discuss the numerical aspects of the Boltzmann transport equation (BE) for electrons in semiconductor devices, which is stabilized by Godunov’s...  相似文献   
7.
In the present article, as a first endeavor, the wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes is investigated on the basis of second-order shear deformation theory. Four different types of functionally graded nanocomposites are presented. An analytical method is used to find the circular frequencies and phase velocities. To show the accuracy of the present methodology, our results for the free vibration are compared with the results of functionally graded plates available in the literature. The influences of different parameters are also investigated on the circular frequencies and phase velocities.  相似文献   
8.
In recent years, new meta-heuristic algorithms have been developed to solve optimization problems. Recently-introduced Cuckoo Optimization Algorithm (COA) has proven its excellent performance to solve different optimization problems. Precedence Constrained Sequencing Problem (PCSP) is related to locating the optimal sequence with the shortest traveling time among all feasible sequences. The problem is motivated by applications in networks, scheduling, project management, logistics, assembly flow and routing. Regarding numerous practical applications of PCSP, it can be asserted that PCSP is a useful tool for a variety of industrial planning and scheduling problems. However it can also be seen that the most approaches may not solve various types of PCSPs and in related papers considering definite conditions, a model is determined and solved. In this paper a new approach is presented for solving various types of PCSPs based on COA. Since COA at first was introduced to solve continuous optimization problems, in order to demonstrate the application of COA to find the optimal sequence of the PCSP, some proposed schemes have been applied in this paper with modifications in operators of the basic COA. In fact due to the discrete nature and characteristics of the PCSP, the basic COA should be modified to solve PSCPs. To evaluate the performance of the proposed algorithm, at first, an applied single machine scheduling problem from the literature that can be formulated as a PCSP and has optimal solution is described and solved. Then, several PCSP instances with different sizes from the literature that do not have optimal solutions are solved and results are compared to the algorithms of the literature. Computational results show that the proposed algorithm has better performance compared to presented well-known meta-heuristic algorithms presented to solve various types of PCSPs so far.  相似文献   
9.
Reliability of the current microprocessor technology is seriously challenged by radiation-induced soft errors. Accurate Vulnerability Factor (VF) modeling of system components is crucial in designing cost-effective protection schemes in high-performance processors. Although Statistical Fault Injection (SFI) techniques can be used to provide relatively accurate VF estimations, they are often very time-consuming. Unlike SFI techniques, recently proposed analytical models can be used to compute VF in a timely fashion. However, VFs computed by such models are inaccurate as the system-level impact of soft errors is overlooked.  相似文献   
10.
The relative performance of different potential liquid oxygen carriers within a novel system that can be configured for either chemical looping gasification or combustion is assessed. The parameters considered here are the melting temperature, the Gibbs free energy, reaction enthalpy, exergy and energy flows, syngas quality and temperature difference between the two reactors. Results show that lead, copper and antimony oxides are meritorious candidates for the proposed systems. Antimony oxide was found to offer strong potential for high quality syngas production because it has a reasonable oxygen mass ratio for gasification. A sufficiently low operating temperature to be compatible with concentrated solar thermal energy and a propensity to generate methane. In contrast, copper and lead oxides offer greater potential for liquid chemical looping combustion because they have higher oxygen mass ratio and a higher operating temperature, which enables better efficiency from a power plant. For all three metal oxides, the production of methane via the undesirable methanation reaction is less than 2% of the product gasses for all operating temperatures and an order of magnitude lower for lead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号