首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
机械仪表   2篇
冶金工业   1篇
自动化技术   1篇
  2017年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
An optimal trajectory design of a module for the planetary landing problem is achieved by minimizing the control effort expenditure. Using the calculus of variations theorem, the control variable is expressed as a function of costate variables, and the problem is converted into a two-point boundary-value problem. To solve this problem, the performance measure is approximated by employing a trigonometric series and subsequently, the optimal control and state trajectories are determined. To validate the accuracy of the proposed solution, a numerical method of the steepest descent is utilized. The main objective of this paper is to present a novel analytic guidance law of the planetary landing mission by optimizing the control effort expenditure. Finally, an example of a lunar landing mission is demonstrated to examine the results of this solution in practical situations.  相似文献   
2.

This article presents vision-based formation flight control for aerial robots with a special focus on failure conditions in visual communication. Then, by proposing and combining two strategies, a new solution is presented for formation control. In vision-based formation flight, the state variables of the leader are estimated using image processing and unscented Kalman filter. The follower adjusts its position with respect to the leader based on the results of the estimation. In the case of visual communication failure an error will occur in the estimation of variables, which would increase with the decreased image quality. In the first proposed strategy, during the failure emergence, the position of the follower aerial robot is obtained by combining the unscented Kalman filter's estimated velocity vector and the velocity vector before failure. The weighting coefficient of each velocity vector is obtained by fuzzy logic and based on image quality. In the second strategy, to reduce the possibility of collision between the members, the geometry of the formation pattern is expanded as a function of image quality and the distance between the members. The expansion coefficient is also extracted by a fuzzy inference method, and the desired distance between the members is increased as a function of expansion coefficient. These two strategies are combined to be used during failure periods. Finally, simulation studies are presented which are conducted based on the system nonlinear equations, a model with 6 degrees of freedom for each member, and the proposed visual noise model. Obtained results reveal the proper capability of the proposed hybrid strategy in terms of controlling the formation flight during failure conditions.

  相似文献   
3.
A closed-loop time-optimal control strategy for the highly nonlinear problem of the lunar landing mission by using the perturbation technique is developed in this study. The first part of the study considers analytical solution for an optimal control policy of variable mass spacecraft, while it descents on the surface of the moon in the variable gravitational field of it. To validate the accuracy of perturbation solution, a numerical approach based on steepest descent method is employed. The second part considers analytical derivation of an optimal feedback guidance solution by employing the neighboring optimal control (NOC) law when effects of imperfection in the dynamic model or disturbing noises have been taken into account. The technique of NOC produces time-varying feedback gains that minimize the performance index to the second order for perturbations from a nominal optimal path. The robustness of the designed NOC law is examined with applying sinusoidal noises. From the study of the simulation results, it may be concluded that the developed optimal guidance laws may be used in real world spacecraft applications.  相似文献   
4.
The dynamics of a direct pressure regulator valve have been studied through bondgraph simulation technique. The governing equations of the system have been derived from the obtained model. While solving the system equations numerically, various pressure-flow characteristics across the regulator ports and the orifices are taken into consideration. The simulation study identifies some critical parameters, which have significant effect on the transient response of the system. The simulation results are determined using the MATLAB-SIMULINK environment. The main novelty of this work is to present an analytic solution in analyzing a nonlinear complex system with interaction of several energy domains. The other conventional attempts employed before this solution resulted to inaccurate simulation results which can not predict the dynamical response of the system. Numerical results implied to the good accuracy of the bondgraph study, while comparing with experimental results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号