首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
机械仪表   4篇
一般工业技术   1篇
冶金工业   1篇
  2016年   1篇
  2013年   3篇
  2012年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Inconel 718 is known to be among the most difficult-to-machine materials due to its special properties which cause the short tool life and severe surface damages. The properties, which are responsible for poor machinability, include rapid work hardening during machining; tendency to weld with the tool material at high temperature generated during machining; the tendency to form a built-up edge during machining; and the presence of hard carbides, such as titanium carbide and niobium carbide, in their microstructure. Conventional method of machining Inconel 718 with cemented carbide tool restricts the cutting speed to a maximum 30?m/min due to the lower hot hardness of carbide tool, high temperature strength and low thermal conductivity of Inconel 718. The introduction of new coated carbide tools has increased cutting speed to 100?m/min; nevertheless, the time required to machine this alloy is still considerably high. High speed machining using advanced tool material, such as CBN, is one possible alternative for improving the productivity of this material due to its higher hot hardness in comparison with carbide tool. This paper specifically deals with surface quality generated under high speed finishing turning conditions on age-hardened Inconel 718 with focus on surface roughness, metallographic analysis of surface layer and surface damages produced by machining. Both coated and uncoated CBN tools were used in the tests, and a comparison between surfaces generated by both tools was also discussed.  相似文献   
2.
Application of polycrystalline cubic boron nitride (PCBN) tools as an alternative for ceramic and cemented carbide tools in machining superalloys has been frequently identified as a solution for enhancing process efficiency but only a limited number of studies has been done in this area. The current study explores the effect of the cutting speed, which was varied in a wide range (2–14 m/s), on machinability of age hardened Inconel 718 with PCBN tools. Performance of binderless PCBN grade and grade with low-cBN content was evaluated in terms of tool life, tool wear, cutting forces and surface quality. Chip formation and process dynamics were analyzed as well. It was found that low-cBN grade provided 70–90% better surface finish and tool life than the binderless at moderate speeds (5–8 m/s). Performance of both grades at low and high speed ranges was non-satisfactory due to notching and flaking respectively. At low cutting speed adhesive wear plays a major role while as the speed increases a chemical wear becomes dominant.  相似文献   
3.
4.
The potential machinability for Alloy 718 (Inconel 718) is examined in terms of five material characteristics considered to play a key role in the machinability: ductility (elongation to fracture), strain hardening (ultimate tensile strength over yield strength), thermal conductivity, yield strength and abrasiveness (amount of carbides). The material characteristics are simulated with the software JMatPro from Sente software. The effects of composition, grain size, hardness (size of the precipitated intermetallic particles for given volume fraction), heat treatment, temperature and strain rate have been modelled and statistically evaluated. Combining thermodynamics-based modelling (JMatPro), design of experiments and statistical analysis (Minitab), and machinability polar diagram, a concept on methodology to assess variations in material specifications and to optimise these specifications with respect to potential machinability has been developed. The mechanical properties, predicted from the meta-modelling are found to be affected by the same parameters: hardness (intermetallic particles characteristics), grain size, amount of aluminium, strain rate and temperature. The abrasiveness should only be affected by the amount of carbon. Simulated material characteristics for two different types of turbine discs were compared with measured tool wear from production environment machining experiments. Variations in material characteristics between the discs were small as well as the critical tool wear, revealing a robust metal cutting process.  相似文献   
5.
The paper presents the results of a comparative analysis of dynamic stability of SiC whisker reinforced alumina tools used in a conventional and prototype toolholders when turning a nickel-based superalloy Inconel 718. The use of the prototype toolholder with a cellular spatial structure is shown to significantly suppress vibrations during the machining operation and stabilize the cutting process within the cutting speed range between 200 and 500 m/min. Considering the identical nature of tool wear rate and the analytical ellaborations regarding the process dynamics, the above-mentioned benefits are related to damping properties of the proposed toolholder.  相似文献   
6.
Inconel 718, an efficient superalloy for energy and aerospace applications, is currently machined with cemented carbide tools at low speed (v c?≈?60 m/min) due to its unfavorable mechanical and thermal properties. The article presents results of a study of superalloy machinability with whisker-reinforced alumina, uncoated and coated polycrystalline cubic boron nitride (PCBN) tools. Turning of age-hardened Inconel 718 (45 HRC) was done under high-speed machining conditions (v c?=?250…350 m/min). Aspects of tool life, tool wear, and generated surface quality were studied. Application of uncoated PCBN tools resulted in surface quality and force level superior to other tool materials. Considerable sideflow of workpiece material was found to affect surface quality, especially for coated PCBN and ceramic tools. It was found that protective function of the coating, which increases the tool life up to 20 %, is limited only to low cutting speed range. EDX and AFM analyses suggested dominance of chemical and abrasive wear mechanisms. EDX mapping of worn tools pointed absence of diffusional wear for PCBN tools and intensive degradation of whisker reinforcement in ceramic tools due to diffusion of Ni, Fe, and Cr.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号