首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
机械仪表   3篇
  2022年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
White-light microsphere-assisted microscopy is a full-field and label-free imaging promising technique making it possible to achieve a subdiffraction lateral resolution. However, performance of this technique depends not only on the geometrical parameters but also on the illumination conditions of the optical system. In the present work, experimental measurements and computer simulations have been performed in air in order to determine the influence of the two diaphragm apertures of the Köhler arrangement and the spectral width of the light source on both the depth-of-focus of the microsphere and the optimization of the imaging contrast. Furthermore, the super-resolution phenomenon is demonstrated and the cumulated optical aberrations are shown through the measurement of the optical transfer function for the different arrangements of the illumination part.  相似文献   
3.
To develop durable bone healing strategies through improved control of bone repair, it is of critical importance to understand the mechanisms of bone mechanical integrity when in contact with biomaterials and implants. Bone mechanical integrity is defined here as the adaptation of structural properties of remodeled bone in regard to an applied mechanical loading. Accordingly, the authors present why future investigations in bone repair and regeneration should emphasize on the matrix surrounding the osteocytes. Osteocytes are mechanosensitive cells considered as the orchestrators of bone remodeling, which is the biological process involved in bone homeostasis. These bone cells are trapped in an interconnected porous network, the lacunocanalicular network, which is embedded in a bone mineralized extracellular matrix. As a consequence of an applied mechanical loading, the bone deformation results in the deformation of this lacunocanalicular network inducing a shift in interstitial fluid pressure and velocity, thus resulting in osteocyte stimulation. The material environment surrounding each osteocyte, the so called perilacunar and pericellular matrices properties, define its mechanosensitivity. While this mechanical stimulation pathway is well known, the laws used to predict bone remodeling are based on strains developing at a tissue scale, suggesting that these strains are related to the shift in fluid pressure and velocity at the lacunocanalicular scale. While this relationship has been validated through observation in healthy bone, the fluid behavior at the bone-implant interface is more complex. The presence of the implant modifies fluid behavior, so that for the same strain at a tissue scale, the shift in fluid pressure and velocity will be different than in a healthy bone tissue. In that context, new markers for bone mechanical integrity, considering fluid behavior, have to be defined. The viewpoint exposed by the authors indicates that the properties of the pericellular and the perilacunar matrices have to be systematically investigated and used as structural markers of fluid behavior in the course of bone biomaterial development.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号