首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   2篇
机械仪表   1篇
能源动力   2篇
一般工业技术   3篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2012年   3篇
  2011年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The self-assembling properties, stability, and dynamics of hybrid nanocarriers (gold nanoparticles (AuNPs) functionalized with cysteine-based peptides) in solution are studied through a series of classical molecular dynamics simulations based on a recently parametrized reactive force field. The results reveal, at the atomic level, all the details regarding the peptide adsorption mechanisms, nanoparticle stabilization, aggregation, and sintering. The data confirm and explain the experimental findings and disclose aspects that cannot be scrutinized by experiments. The biomolecules are both chemisorbed and physisorbed; self-interactions of the adsorbates and formation of stable networks of interconnected molecules on the AuNP surfaces limit substrate reconstructions, protect the AuNPs from the action of the solvent, and prevent direct interactions of the gold surfaces. The possibility of agglomeration of the functionalized nanoparticles, compared with the sintering of the bare supports in a water solution, is demonstrated through relatively long simulations and fast steered dynamics. The analysis of the trajectories reveals that the AuNPs were well stabilized by the peptides. This prevented particle sintering and kept the particles far apart; however, part of their chains could form interconnections (crosslinks) between neighboring gold vehicles. The excellent agreement of these results with the literature confirm the reliability of the method and its potential application to the modeling of more complex materials relevant to the biomedical sector.
  相似文献   
2.
In the context of stringent exhaust gas emission regulations and requirements of increased efficiency, spark ignition (SI) engine research is looking at ever more detailed approaches, that cover a large number of processes. Ignition is one of the determining factors for repeatable combustion and its study is associated with extensive difficulties due to the turbulent nature of fluid motion. In order to provide data on the energy transfer and thermal conditions of the flame kernel in its initial stages, vibrational and rotational temperatures were evaluated using UV emission spectra detected in a SI engine. Stoichiometric operation with methane and hydrogen–methane blends was employed, so as to identify any influence of the fuel's molecular structure on these processes. The consolidated methodology for temperature estimation using the ratio between the emission bands of CN and OH, was implemented considering the effects of collisional broadening. Vibrational temperatures evaluation showed and evolution from 8000 K to 4000 K during the arc and glow phase specific for SI. The evolution of CN emission intensity confirmed its formation only in the initial stages of ignition, for which kernel temperature is high enough. Simulations of chemical equilibrium showed that the evaluation of temperatures based on spectroscopic measurements is in line with the decreasing trend correlated with the electrical current evolution, measured in the secondary circuit.  相似文献   
3.
A theoretical approach to heterogeneous catalysis by sub-nanometre supported metal clusters and alloys is presented and discussed. Its goal is to perform a computational sampling of the reaction paths in nanocatalysis via a global search in the phase space of structures and stoichiometry combined with filtering which takes into account the given experimental conditions (catalytically relevant temperature and reactant pressure), and corresponds to an incremental exploration of the disconnectivity diagram of the system. The approach is implemented and applied to the study of propylene partial oxidation by Ag(3) supported on MgO(100). First-principles density-functional theory calculations coupled with a Reactive Global Optimization algorithm are performed, finding that: (1) the presence of an oxide support drastically changes the potential energy landscape of the system with respect to the gas phase, favoring configurations which interact positively with the electrostatic field generated by the surface; (2) the reaction energy barriers for the various mechanisms are crucial in the competition between thermodynamically and kinetically favored reaction products; (3) a topological database of structures and saddle points is produced which has general validity and can serve for future studies or for deriving general trends; (4) the MgO(100) surface captures some major features of the effect of an oxide support and appears to be a good model of a simple oxide substrate; (5) strong cooperative effects are found in the co-adsorption of O(2) and other ligands on small metal clusters. The proposed approach appears as a viable route to advance the role of predictive computational science in the field of heterogeneous nanocatalysis.  相似文献   
4.
This paper describes the results obtained in a port fuel injection spark-ignition (PFI SI) engine by optical diagnostics during the fuel injection and the combustion process. A research optical engine was equipped with the fuel injection system, the head and the exhaust device of a commercial 250 cc engine for scooters and small motorcycles. Two injectors were tested: standard 3-hole injector that equipped the real reference engine and a 12-hole injector. The intake manifold was modified to allow the visualization of the fuel injection using an endoscopic system coupled with CCD camera. Size and number of the fuel droplets were evaluated through an image processing procedure. The cycle resolved visualization and chemiluminescence allowed to follow the combustion process from the spark ignition to the exhaust phase. All the optical data were correlated with engine parameters and exhaust emissions. The effect of the fuel injector type on deposits formed by fuel accumulation and dripping on the intake valves steams and seats was investigated. In particular, the evolution of diffusion-controlled flames due to the fuel deposits burning was analyzed. These flames were principally located near the intake valves, and they persisted well after the normal combustion event. The consequences were the formation and emission of soot and unburned hydrocarbons. The multi-hole injector helped reducing wall wetting and deposit formation so that the emission characteristic can be improved. The use of 12-hole injector allowed a more homogeneous distribution for a lower time of fuel droplets in the intake manifold than the 3-hole injector. This study also investigated the detailed physical/chemical phenomena to figure out reasons for the improvement using optical measurements.  相似文献   
5.
While nuclei particles are found in vehicle emissions in low mass concentration, they are being studied since their number concentration may be high and they may contribute to the surface composition of larger particles and health effects associated with pollution. In this work, we obtain information on where particles emitted by an engine were formed/grown. This is done by comparing the measured particle charge fraction distributions to those calculated with Boltzmann theory for the different temperatures relevant to the combustion chamber, exhaust and sampling systems. We have applied this method to analyze the exhaust of a gasoline direct injection engine. Solid core particles with a size of 1–5 nm may be formed at high temperature in the combustion chamber and semivolatile species condense on their surface as the exhaust cools in the tail pipe, in low dilution conditions. Off-line measurements, using Surface Enhanced Raman Spectroscopy (SERS) show that the sampled particles have SERS spectra with typical D and G bands of disordered amorphous carbon similar to those measured for flame-generated nanoparticles.  相似文献   
6.
Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high‐risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR‐34a and let‐7b are oncogenic in NB. Due to the ability of miRNA‐mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated‐cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR‐34a and let‐7b by NB‐targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down‐modulation of MYCN and its down‐stream targets, ALK and LIN28B, exerted by miR‐34a and let‐7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR‐34a and let‐7b combined replacement and support its clinical application as adjuvant therapy for high‐risk NB patients.  相似文献   
7.
Atypical Spitz tumors (AST) deviate from stereotypical Spitz nevi for one or more atypical features and are now regarded as an intermediate category of melanocytic tumors with uncertain malignant potential. Activating NTRK1/NTRK3 fusions elicit oncogenic events in Spitz lesions and are targetable with kinase inhibitors. However, their prevalence among ASTs and the optimal approach for their detection is yet to be determined. A series of 180 ASTs were screened with pan-TRK immunohistochemistry and the presence of NTRK fusions was confirmed using FISH, two different RNA-based NGS panels for solid tumors, and a specific real time RT-PCR panel. Overall, 26 ASTs showed pan-TRK immunostaining. NTRK1 fusions were detected in 15 of these cases showing cytoplasmic immunoreaction, whereas NTRK3 was detected in one case showing nuclear immunoreaction. Molecular tests resulted all positive in only two ASTs (included the NTRK3 translocated), RNA-based NGS and real time RT-PCR were both positive in three cases, and FISH and real time RT-PCR in another two cases. In seven ASTs NTRK1 fusions were detected only by FISH and in two cases only by real time RT-PCR. The frequency of NTRK fusions in ASTs is 9%, with a clear prevalence of NTRK1 compared to NTRK3 alterations. Pan-TRK immunohistochemistry is an excellent screening test. Confirmation of NTRK fusions may require the use of different molecular techniques.  相似文献   
8.
The magnetism of CoPt nanostructures supported on the MgO(100) surface is investigated via first-principles simulations using 1D models. Nanostructures with L1(0) chemical ordering and cube-on-cube epitaxy are predicted to possess large magnetic moments and easy magnetization axis perpendicular to the surface. However, their magnetic anisotropy energy is roughly halved with respect to the bulk alloy due to a peculiar mixing of particle and support electronic states. The general factors at play in determining this behavior and the implications of these findings are discussed in view of designing room-temperature magnetic bits.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号