首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4979篇
  免费   551篇
  国内免费   8篇
电工技术   45篇
综合类   3篇
化学工业   1599篇
金属工艺   159篇
机械仪表   285篇
建筑科学   94篇
能源动力   257篇
轻工业   440篇
水利工程   4篇
石油天然气   3篇
无线电   854篇
一般工业技术   1268篇
冶金工业   131篇
原子能技术   55篇
自动化技术   341篇
  2024年   2篇
  2023年   61篇
  2022年   63篇
  2021年   145篇
  2020年   134篇
  2019年   143篇
  2018年   188篇
  2017年   180篇
  2016年   206篇
  2015年   197篇
  2014年   274篇
  2013年   323篇
  2012年   394篇
  2011年   449篇
  2010年   314篇
  2009年   334篇
  2008年   342篇
  2007年   235篇
  2006年   197篇
  2005年   168篇
  2004年   157篇
  2003年   167篇
  2002年   124篇
  2001年   110篇
  2000年   93篇
  1999年   90篇
  1998年   98篇
  1997年   59篇
  1996年   56篇
  1995年   48篇
  1994年   29篇
  1993年   24篇
  1992年   16篇
  1991年   21篇
  1990年   24篇
  1989年   16篇
  1988年   8篇
  1987年   14篇
  1986年   5篇
  1985年   8篇
  1984年   8篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1979年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有5538条查询结果,搜索用时 250 毫秒
1.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
2.
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter‐species, and inter‐kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)—bacterial extracellular vesicles—with immune‐modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF‐α and IL‐6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM‐1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post‐injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.  相似文献   
3.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
4.
The effect of a thin RuOx layer formed on the Ru/TiN/doped poly-Si/Si stack structure was compared with that on the RuOx/TiN/doped poly-Si/Si stack structure over the post-deposition annealing temperature ranges of 450–600°C. The Ru/TiN/poly-Si/Si contact system exhibited linear behavior at forward bias with a small increase in the total resistance up to 600°C. The RuOx/TiN/poly-Si/Si contact system exhibited nonlinear characteristics under forward bias at 450°C, which is attributed to no formation of a thin RuOx layer at the RuOx surface and porous-amorphous microstructure. In the former case, the addition of oxygen at the surface layer of the Ru film by pre-annealing leads to the formation of a thin RuOx layer and chemically strong Ru-O bonds. This results from the retardation of oxygen diffusion caused by the discontinuity of diffusion paths. In particular, the RuOx layer in a nonstoichiometric state is changed to the RuO2-crystalline phase in a stoichiometric state after post-deposition annealing; this phase can act as an oxygen-capture layer. Therefore, it appears that the electrical properties of the Ru/TiN/poly-Si/Si contact system are better than those of the RuOx/TiN/poly-Si/Si contact system.  相似文献   
5.
The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by the boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack-tip element is derived. The numerical values of the thermal stress intensity factors for an interface Griffith crack in an infinite body are compared with the previous solutions. The thermal stress intensity factors for a symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material property. However, the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.  相似文献   
6.
7.
Smart TDI readout circuit for long-wavelength IR detector   总被引:3,自引:0,他引:3  
A smart time delay and integration (TDI) readout circuit is suggested which performs background suppression, cell-to-cell non-uniformity compensation, and dead pixel correction. Using the smart TDI readout circuit, the integration capacitor area occupying almost the whole area of a unit-cell can be reduced to one-fifth and transimpedance gain can increase by five times. From measurement results, it is found that the skimming current error for a few hundred nA background current is < 1.25 nA corresponding to LSB/2 of ADC and the non-uniformity introduced by cell-to-cell background current variation is reduced to 1.02 nA  相似文献   
8.
From chloromethylated polyimide, a useful starting material for modification of aromatic polyimides, a thermocurable transparent polyimide having acrylate side groups was prepared. In the presence of 1,8‐diazabicyclo[5,4,0]undec‐7‐ene, chloromethylated polyimide was esterified with acrylic acid to synthesize poly(imide methylene acrylate). The polymer was soluble in organic solvent, which makes it possible to prepare a planar film by spin coating. The polymer film became insoluble after thermal treatment at 230 °C for 30 min. Optical transparency of the film at 400 nm (for 1 µm thickness) was higher than 98 % and not affected by further heating at 230 °C for 250 min. Adhesion properties measured by the ASTM D3359‐B method ranged from 4B to 5B. Preliminary results of planarization testing showed a high degree of planarization (DOP) value (>0.53). These properties demonstrate that poly(imide methylene acrylate) could be utilized as a thermocurable transparent material in fabricating display devices such as TFT‐LCD. Copyright © 2004 Society of Chemical Industry  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号