首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   1篇
机械仪表   1篇
冶金工业   3篇
  2014年   1篇
  2012年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The temperature difference between the top and bottom of a glass fiber reinforced polymer (GFRP) composite deck, ~ 65°C ( ~ 122°F), is nearly three times that of conventional concrete decks ~ 23°C ( ~ 41°F). Such a large temperature difference is attributed to the relatively lower thermal conductivity of GFRP material. In this study, laboratory tests were conducted on two GFRP bridge deck modules (10.2 and 20.3?cm deep decks) by heating and cooling the top surface of the GFRP deck, while maintaining ambient (room) temperature at the deck bottom. Deflections and strains were recorded on the deck under thermal loads. Theoretical results (using macro approach, Navier-Levy, and FEM) were compared with the laboratory test data. The test data indicated that the GFRP deck exhibited hogging under a positive temperature difference (i.e., Ttop>Tbottom, heating test; Ttop and Tbottom are temperatures at top and bottom of the deck, respectively) and sagging under a negative temperature difference (i.e., Ttop相似文献   
2.
A novel beam-elastic substrate element with inclusion of microstructure and surface energy effects is proposed in this paper. The modified couple stress theory is employed to account for the microstructure-dependent effect of the beam bulk material while Gurtin-Murdoch surface theory is used to capture the surface energy-dependent size effect. Interaction mechanism between the beam and the surrounding substrate medium is represented by the Winkler foundation model. The governing differential equilibrium and compatibility equations of the beam-elastic substrate system are consistently derived based on virtual displacement and virtual force principles, respectively. Both essential and natural boundary conditions of the system are also obtained. Two modified Tonti’s diagrams are presented to provide the big picture of both displacement-based and force-based formulations of the system. Due to similarity between the current problem and the one related to the beam on Winkler-Pasternak foundation, the so-called “natural” beam-Winkler-Pasternak foundation element coined by the authors is employed to perform two numerical simulations to study the characteristics and behaviors of a beam-substrate system with inclusion of microstructure and surface effects.  相似文献   
3.
A Fourier cum polynomial series solution with correction factors is presented herein for differential equations with variable coefficients. The differential equations correspond to a wide range of boundary value problems. The correction factors included herein are: (1) modified Lanczos correction; (2) Bessel J; and (3) loading correction factor. These correction factors are introduced in terms of Fourier and polynomial series. The main purpose of using correction factors through a set of series is to improve convergence of the proposed solution, using the first two terms of the series. For the loading correction factor, a Fourier series expansion coupled with orthogonality conditions leads to evaluating undetermined Fourier coefficients of arbitrarily applied loads using concepts of summation equations. Representative boundary value problems are provided to demonstrate the efficiency and accuracy of the first two terms of the proposed solution with correction factors.  相似文献   
4.
Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to obtain more efficient and cost effective structural materials and systems. Currently, FRP composites are becoming more popular in civil engineering applications. The objectives of this research are to study performance and behavior of light weight multi-cellular FRP composite bridge decks (both module and system levels) under various loading conditions through finite element modeling, and to validate analytical response of FRP composite bridge decks with data from laboratory evaluations. The relative deflection, equivalent flexural rigidity, failure load (mode) and load distribution factors (LDF) based on FE results have been compared with experimental data and discussed in detail. The finite element results showing good correlations with experimental data are presented in this work.  相似文献   
5.
Performance Evaluation of FRP Bridge Deck Component under Torsion   总被引:1,自引:0,他引:1  
Torsional response of fiber-reinforced polymeric (FRP) composites is more complex than conventional materials. Therefore, understanding torsional response of FRP components along with shear behavior leads to development of safe and accurate design specifications. Experimental data of multicellular FRP bridge deck components have been compared with simplified theoretical model studies focused on torsional rigidity, equivalent in-plane shear modulus, in-plane shear strain, and joint efficiency. Simplified classical lamination theory (SCLT) is used to predict torsional rigidity. Results from SCLT, experimental data, and finite-element analysis validate proposed methodology to find torsional rigidity. Data on torsional rigidity and equivalent in-plane shear modulus correlated (less than 12%) with results from SCLT and finite-element analysis. In-plane shear strain based on SCLT is also concordant with test results. In an FRP deck system with 100% joint efficiency, the two-dimensional effect (plate action) on torsional rigidity results in a 20% higher rigidity when compared to a beam model. However, if a refined model has only 80% joint efficiency, then plate action results in a 6% difference from the beam model. In addition, service load design criteria for FRP decks under shear must not excess 16% of the ultimate strain by accounting for environmental and aging effects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号