首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
电工技术   1篇
建筑科学   1篇
冶金工业   5篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 109 毫秒
1
1.
Complete oxidation of benzene over supported manganese oxides catalysts was studied.Composite supports Ce0.5+xZr0.4–xLa0.1O1.95-Al2O3 (x=0,0.1,0.2,0.3,0.4),and CeO2-Al2O3 were prepared by co-precipitation method,and manganese oxides (MnOx) catalysts were prepared by incipient wetness method.Catalytic activity was performed in a conventional fixed bed flow reactor.Among these catalysts,MnOx supported on Ce0.8Zr0.1La0.1O1.95-Al2O3 was found to have the highest catalytic activity for benzene oxidation.The comp...  相似文献   
2.
利用陡波冲击电流发生器研究避雷器阀片的残压及过冲   总被引:1,自引:2,他引:1  
论述了在陡波冲击电流(最短波前近180ns)作用下避雷器阀片的残压及其过冲的特点和成因;比较了不同波形电流作用下ZnO及SiC阀片的伏安特性。所得结论对避雷器的设计及生产具有一定的参考价值。  相似文献   
3.
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.  相似文献   
4.
Volatile organic compounds (VOCs) are recog-nized as major contributors to air pollution ,either di-rectlythroughtheir toxic or malodorous nature or indi-rectly as ozone precursors and smog precursors[1].Amongthe methods used to eli minate VOCs ,catalytic…  相似文献   
5.
This article showed that the catalytic activity of MnOx/γ-Al2O3/Ce0.5Zr0.5O2 monolithic catalyst toward the catalytic combustion of ethanol in a fixed bed reactor could be greatly improved by doping three metal oxides into Ce0.5Zr0.5O2. The catalytic activity of MnOx/γ-Al2O3/Ce0.45Zr0.45M0.1 Ox (M = Y, La, Mn) is better than that of MnOx/γ-Al2O3/Ce0.5 Zr0.5O2. The order of activity of the catalysts is as follows: MnOx/γ-Al2O3/Ce0.45Zr0.45Y0.1Ox 〉 MnOc/γ-Al2O3/Ce0.45 Zr0.45La0.1Ox 〉 MnOx/γT-Al2O3/Ce0.45Zr0.45Mn0.1Ox 〉 MnOx/y-Al2O3/Ce0.5Zr0.5O2. The influence of the loading amount of manganese oxide in enhancing the catalytic activity of MnOx/γ-Al2O3/Ce0.45Zr0.45Y0.1 Ox was investigated. The results showed that when MnO2 loading amount was 10% (mass fraction), the MnOx/Al2O3/Ce0.45Zr0.45Y0.1Ox catalyst recorded the highest activity.  相似文献   
6.
6~10kV合成绝缘套金属氧化物避雷器通过鉴定电力科学研究院高压所与北京电力设备总厂电器厂合作开发研制的6~10kV系统用电站型、配电型一次成型合成绝缘套金属氧化物避雷器(MOA),已于1994年11月通过由电力工业部电力科学研究院、华北电力集团和北...  相似文献   
7.
A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method. The catalysts were characterized by N 2 adsorption-desorption, H 2 -TPR and XPS. When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3, the catalysts possessed better catalytic activity, and benzene was converted completely at 558 K. Results of H 2 -TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts. Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts, and stabilized manganese at higher oxidation state. And the catalyst with the loading ratio 7:3 was a little worse than 8:2, since the interaction between manganese oxides and copper oxides is too strong, copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号