首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学工业   4篇
机械仪表   1篇
建筑科学   11篇
能源动力   10篇
轻工业   5篇
一般工业技术   6篇
冶金工业   7篇
自动化技术   5篇
  2021年   3篇
  2020年   1篇
  2016年   2篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
A dynamic mathematical model for simulating the coupled heat and moisture migration through multi-layer porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The discretization of the governing equations was done by the finite difference approach. A new experimental set-up was also developed in this study. The evolution of transient temperature and moisture distributions inside specimens were measured. The method for determining the temperature gradient coefficient was also presented. The moisture diffusion coefficient, temperature gradient coefficient, sorption–desorption isotherms were experimentally evaluated for some building materials (sandstone and lime-cement mortar). The model was validated by comparing with the experimental data with good agreement. Another advantage of the method lies in the fact that the required transport properties for predicting the non-isothermal moisture flow only contain the vapor diffusion coefficient and temperature gradient coefficient. They are relatively simple, and can be easily determined.  相似文献   
2.
A stable model based fuzzy predictive controller based on fuzzy dynamic programming is introduced. The objective of the fuzzy predictive controller is to drive the state of the system to a terminal region where a local stabilizing controller is invoked, leading to a dual mode strategy. The prediction horizon is fixed and specified. The stability of the controlled system is studied using the value function as a Lyapunov function. Guaranteed stability is obtained under conditions on the terminal region, the local control law and the membership functions of fuzzy goal and constraints therein. The solution procedure is based on dynamic programming with branch and bound.  相似文献   
3.
A new approach of direct adaptive control of single input single output nonlinear systems in affine form using single-hidden layer neural network (NN) is introduced. In contrast to the algorithms in the literature, the weights adaptation laws are based on the control error and not on the tracking error or its filtered version. Since the control error is being expressed in terms of the NN controller, hence its weights updating laws are obtained via back-propagation concept. A fuzzy inference system (FIS) with heuristically defined rules is introduced to provide an estimate of this error based on the past history of the system behaviour. The stability of the closed loop is studied using Lyapunov theory. A fixed structure is then proposed for the FIS and the design parameters reduce to the parameters of the NN. The method is reproducible and does not require any pre-training of the network weights.  相似文献   
4.
This study is a contribution to European projects Pascool/Joule II and Altener/Sink that deals with feasibility of passive cooling systems in Europe. The first aim of this work was to define a design methodology to evaluate natural cooling potential according to the climatic quantification criteria of the site, the cooling system performance, and comfort criteria defined by the couple of temperature and relative humidity set points. A simplified approach, based on climatic potential criteria as theoretical cooling potential index, the available potential index, the cooling need index, and the natural cooling normalized capacity, was developed. It was applied to 105 European sites for different types of evaporative cooling systems (direct and indirect), and for various temperature and relative humidity set points. During the second stage, a refined approach taking into account building characteristics and the cooling system performance, was developed. This method is based on the integration of numerical models of passive cooling systems in a thermal building software in order to consider interaction phenomena between cooling system and building. Application of this approach to one building has been done in order to assess energy consumption gain achieved by using passive cooling systems. These two complementary approaches provide helpful information dealing with the feasibility of a passive cooling technique based on comfort and energy saving criteria. They could be used by architects and building designers as helpful decision making tools during the different stages of building design.  相似文献   
5.
Progressive collapse of cold-formed steel framed structures   总被引:1,自引:0,他引:1  
This study investigated the possibility of progressive collapse of a cold-formed steel framed structure. Five different analysis cases were considered, exterior wall column removal specified in General Services Administration (GSA) guidelines and Department of Defense (DoD) guidelines, corner wall column removal specified in GSA and DoD guidelines, and analysis by Successive Removal. The results showed that the removal of corner wall columns appeared to cause progressive collapse of a portion of the second and third floor of the end bay directly associated with the column removal, and not the entire building.  相似文献   
6.
This paper describes a dynamic model of transient heat and mass transfer across a green roof component. The thermal behavior of the green roof layers is modeled and coupled to the water balance in the substrate that is determined accounting for evapotranspiration. The water balance variations over time directly impact the physical properties of the substrate and the evapotranspiration intensity. This thermal and hydric model incorporates wind speed effects within the foliage through a new calculation of the resistance to heat and mass transfer within the leaf canopy. The developed model is validated with experimental data from a one-tenth-scale green roof located at the University of La Rochelle. A comparison between the numerical and the experimental results demonstrates the accuracy of the model for predicting the substrate temperature and water content variations. The heat and mass transfer mechanisms through green roofs are analyzed and explained using the modeled energy balances, and parametric studies of green roof behavior are presented. A surface temperature difference of up to 25 °C was found among green roofs with a dry growing medium or a saturated growing medium. Furthermore, the thermal inertia effects, which are usually simplified or neglected, are taken into account and shown to affect the temperature and flux results. This study highlights the importance of a coupled evapotranspiration process model for the accurate assessment of the passive cooling effect of green roofs.  相似文献   
7.
Only a few yeast strains produce pectin-degrading enzymes such as pectin esterases and depolymerases (hydrolases and lyases). Strain SCPP is the only known Saccharomyces strain to produce these pectinases. One of these pectolytic enzymes. PGL1-encoded endopolygalacturonase (EC 3.2.1.15), hydrolyses the alpha-1,4-glycosidic bonds within the rhamnogalacturonan chains in pectic substances. This paper presents the cloning and sequencing of the first S. cerevisiae gene involved in pectin degradation. Few differences were found between the two deduced amino acid sequences encoded by PGL1-1 from a pectolytic (PG+) strain (SCPP) and PGL1-2 from a non-pectolytic (PG-) strain (X2180-1B). Similarities were found with other polygalacturonases from plants and other microorganisms. Of the two S. cerevisiae genes, only the one isolated from strain SCPP was able, by overexpression, to confer endopolygalacturonase activity to a laboratory strain of S. cerevisiae. Overexpression of PGL1-1 gene in a non-pectolytic strain resulted in halo formation on polygalacturonic acid-containing agar plates stained with ruthenium red.  相似文献   
8.
A simple, easy to implement alternative method for designing fuzzy logic controllers (FLCs) with symmetrically distributed fuzzy sets in a universe of discourse is introduced. The design parameters include the parameters of the membership functions of the inputs and outputs and the rule base. The method is based on a network implementation of the FLC with real and binary weights with constraints. Due to the presence of the binary weights the backpropagation technique cannot be used. The learning problem is cast as a mixed integer constrained dynamic optimization problem and solved using the genetic algorithm (GA). The crossover and mutation are slightly disrupted in order to cope with the constraints on the binary weights. Training of the controller is carried out in a closed-loop simulation with the controller in the loop  相似文献   
9.
The polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA, 20∶5n−3) and docosahexaenoic acid (DHA, 22∶6n−3), which have several pharmaceutical properties, have been purified from cod liver oil. The process consisted of four main steps: (i) saponification of the oil, (ii) use of urea inclusion adducts method to obtain PUFA, (iii) PUFA methylation, and (iv) argentation silica gel column chromatography of the methylated PUFA. Argentation silica gel chromatography yielded highly pure DHA in the process (100% purity, 64% yiild). For EPA, the recovery in the combined process was 29.6%, and the final purity was 90.6%, owing to the simultaneous elution of other polyunsaturated fatty esters. The recovery in the urea inclusion method was strongly enhanced by application of orbital agitation during the crystallization process, in which EPA yield increased from 60–70% without agitation to 90–97% at 800 rpm; stearidonic acid (18∶4n−3) yield ranged from 60–75% without agitation to 87–95% at 800 rpm, and DHA yield varied from 53–73% without agitation to 85–99% at 800 rpm  相似文献   
10.
The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor environment and the overall performance of buildings. In this paper, a model for predicting whole building heat and moisture transfer was presented. Both heat and moisture transfer in the building envelope and indoor air were simultaneously considered; their interactions were modeled. The coupled model takes into account most of the main hygrothermal effects in buildings. The coupled system model was implemented in MATLAB-Simulink, and validated by using a series of published testing tools. The new program was applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption under different climates. The results show that the use of more detailed simulation routines can result in improvements to the building's design for energy optimisation through the choice of proper hygroscopic materials, which would not be indicated by simpler calculation techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号