首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
建筑科学   1篇
一般工业技术   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Explosives are now persistent environmental pollutants that are targets of remediation and monitoring in a wide array of environmental media. Nitroguanidine (NG) and 2,4-dinitroanisole (DNAN) are two insensitive energetic compounds recently used as munitions explosives. To protect our environment and human health, the levels of these compounds in soils and waters need to be monitored. However, no sensitive analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), have been developed for detecting these new compounds at trace levels and to be concurrently applied to monitor the common explosives. In general, the concentrations of explosives in either soil or water samples are very low and widely distributed. Therefore, a fast and sensitive method is required to monitor those compounds and increase our ability to find and address the threats they pose to human health and ecological receptors. In this study, a fast and sensitive analytical method has been developed to quantitatively determine NG and DNAN in soil, tap water, and river water by using ultrafast LC-MS/MS. To make this method a comprehensive analytical technique for other explosives as well, it has included other commonly used explosives in the method development, such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 1,3,5-trinitroper-hydro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (ADNT), and pentaerythritol tetranitrate (PETN). The method detection limits (MDLs) of these compounds in soil ranged from 0.2 to 5 ppb, and a good linearity was obtained over a concentration range of 0.5-200 ppb. The recoveries of some compounds are equal to or better than the current EPA methods but with much higher sensitivities.  相似文献   
2.
The effect of TNT (2,4,6-trinitrotoluene) and its metabolites, 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2A-DNT), and 4-amino-2,6-dinitrotoluene (4A-DNT) on cricket (Acheta domesticus) reproduction was evaluated. We previously used crickets to assess the toxicity of a nitramine explosive (RDX) and its metabolites. It is common to find that while much information on the environmental impact of the parent compound is available in the literature, such is often not the case for the degradation metabolites of the parent compound. In some instances, these metabolites are as toxic (or more so) as the parent compound and we hypothesized that this might be the case for TNT. The presence of TNT and its metabolites in sand (10 µg/g) did not adversely affect cricket egg production, but adversely affected hatching of cricket eggs as compared to controls. However, there were no differences in hatching success among TNT and metabolite treatment groups. Hatching success of cricket eggs in soil or following topical exposure decreased as concentrations of TNT and its metabolites increased. The relative toxicity of TNT and its metabolites in soil generally followed the trend of TNT < 2A-DNT < 4A-DNT < 2,4-DNT. In addition, toxicity appeared to be higher in sand than in sandy loam soil or in the topical exposure test. After 45 days of exposure in sandy loam soil, the EC20 (20% effect concentration), EC50 (50% effect concentration), and EC95 (95% effect concentration) were 14, 116, and 10,837 µg/g for TNT: 1.7, 32, and 16,711 µg/g for 2A-DNT: 1.9, 9, and 296 µg/g for 4A-DNT: and 0.4, 5.7, and 1437 µg/g for 2,4-DNT. Overall, results suggest that parent TNT and metabolites are toxic to cricket eggs at relatively high concentrations and these toxic effects are manifested as a decrease in hatching success.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号