首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   9篇
  国内免费   1篇
电工技术   3篇
化学工业   29篇
金属工艺   5篇
机械仪表   7篇
建筑科学   4篇
能源动力   8篇
轻工业   6篇
水利工程   2篇
石油天然气   1篇
无线电   17篇
一般工业技术   20篇
冶金工业   3篇
原子能技术   2篇
自动化技术   16篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   5篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   8篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有123条查询结果,搜索用时 62 毫秒
1.
Neural Computing and Applications - In order to attain sustainable development, recycled concrete aggregates (RCAs) are increasingly utilized in civil engineering projects. Therefore, it is vital...  相似文献   
2.
CCGA packages for space applications   总被引:1,自引:0,他引:1  
Commercial-off-the-shelf (COTS) area array packaging technologies in high reliability versions are now being considered for applications, including use in a number of NASA electronic systems being utilized for both the Space Shuttle and Mars Rover missions. Indeed, recently a ceramic package version specifically tailored for high reliability applications was used to provide the processing power required for the Spirit and Opportunity Mars Rovers built by NASA-JPL. Both Rovers successfully completed their 3-months mission requirements and continued exploring the Martian surface for many more moths, providing amazing new information on previous environmental conditions of Mars and strong evidence that water exists on Mars.Understanding process, reliability, and quality assurance (QA) indicators for reliability are important for low risk insertion of these newly available packages in high reliability applications. In a previous investigation, thermal cycle test results for a non-functional daisy-chained peripheral ceramic column grid array (CCGA) and its plastic ball grid array (PBGA) version, both having 560 I/Os, were gathered and are presented here. Test results included environmental data for three different thermal cycle regimes (−55/125 °C, −55/100 °C, and −50/75 °C). Detailed information on these—especially failure type for assemblies with high and low solder volumes—are presented. The thermal cycle test procedure followed those recommended by IPC-9701 for tin–lead solder joint assemblies. Its revision A covers guideline thermal cycle requirements for Pb-free solder joints. Key points on this specification are also discussed.In a recent investigation a fully populated CCGA with 717 I/Os was considered for assembly reliability evaluation. The functional package is a field-programmable gate array that has much higher processing power than its previous version. This new package is smaller in dimension, has no interposer, and has a thinner column wrapped with copper for reliability improvement. This paper will also present thermal cycle test results for assemblies of this and its plastic package version with 728 I/Os, both of which were exposed to four different cycle regimes. Two of these cycle profiles are specified by IPC-9701A for tin–lead, namely, −55 to 100 °C and −55 to 125 °C. One is a cycle profile specified by Mil-Std-883, namely, −65/150 °C, generally used for ceramic hybrid packages screening and qualification. The last cycle is in the range of −120 to 85 °C, a representative of electronic systems directly exposed to the Martian environment without use in a thermal control enclosure. Per IPC-9701A, test vehicles were built using daisy chain packages and were continuously monitored and/or manually checked for opens at intervals. The effects of many process and assembly variables—including corner staking commonly used for improving resistance to mechanical loading such as drop and vibration loads—were also considered as part of the test matrix. Optical photomicrographs were taken at various thermal cycle intervals to document damage progress and behavior. Representative samples of these are presented along with cross-sectional photomicrographs at higher magnification taken by scanning electron microscopy (SEM) to determine crack propagation and failure analyses for packages.  相似文献   
3.
4.
5.
This paper proposes a vibration-based fault-diagnosis method for mechanical parts. This method, after algorithm development, only requires a single inexpensive test to inspect the part which could take as short as half a second. The algorithm is developed in three major stages, (i) exciting specimens without or with known faults using a controlled force and recording acceleration of a single point for a short time (ii) finding a signature for each faulty specimen, using Fourier transform and statistical analysis. (iii) Developing a multi-layer perceptron, as a mathematical model, using the results of stage (ii). The elements of a part signature are the inputs to the model. The location (and possibly size and shape factor) of the fault is model output. Stage (i) can be performed experimentally or alternatively with a validated FEM, one experiment or simulation per specimen. The proposed technique was examined to locate (isolate) a fault on an automobile cylinder head. The presented accuracy is considerable, and the data collected at fairly low frequency range (below 1200 Hz) were found to be sufficient for this technique. In the case study of this paper, possible fault locations are on a line; as a result, fault location has one dimension. It is shown that the technique can be extended to higher dimensions.  相似文献   
6.
We studied the optimization of hexavalent chromium (Cr(VI)) removal from aqueous solution using the synthesized zero-valent iron nanoparticles stabilized with sepiolite clay (S-ZVIN), under various parameters such as reaction time (min), initial solution pH and concentration of S-ZVIN (g·L?1) using response surface methodology (RSM). The kinetic study of Cr(VI) was conducted using three types of the most commonly used kinetic models including pseudo zero-order, pseudo first-order, and pseudo second-order models. The rate of reduction reaction showed the best fit with the pseudo first-order kinetic model. The process optimization results revealed a high agreement between the experimental and the predicted data (R2=0.945, Adj-R2=0.890). The results of statistical analyses showed that reaction time was the most impressive factor influencing the efficiency of removal process. The optimum conditions for maximum response (98.15%) were achieved at the initial pH of 4.7, S-ZVIN concentration of 1.3 g·L?1 and the reaction time of 75 min.  相似文献   
7.
Polymer electrolyte membrane fuel cell (PEMFC) is one of the promising electricity generating technologies with a wide range of applicability; however, it needs further improvements to be commercially viable. The design of a PEMFC plays a key role in its viability, and is often reduced to the design of gas flow channel (GFC) at the cathode side. In this study, it is attempted to figure out the optimal dimensions (i.e., width and height) of the rectangular cross sectional area of the cathode GFC of a PEMFC via numerical examination of various sets of dimensions. The optimization procedure is carried out for two different objective functions (the maximization of the maximum power and the maximization of the average power over a range of operating voltages) as well as for different sets of operating conditions (cell temperature, operating pressure, and stoichiometry and relative humidity of inlet gases). To the best of authors' knowledge, the following observations may be considered to be the contributions of the present work to the subject: First, the influence of cross sectional dimensions on the PEMFC performance is considerable, and this considerable influence is not limited to a specific set of operating conditions. Second, the performance of the PEMFC may both deteriorate and improve with the channel width or height, depending on its operating conditions as well as on its current dimensions. Third, there exists no single optimal cross section for different sets of operating conditions. Fourth, the polarization curves of two different cross sections may intersect, and as a result, one cross section may have a greater maximum power but at the same time lower average power in comparison to the other one. And fifth, among all the operating parameters, the relative humidity of inlet gases has the greatest effect on the optimal cross sectional dimensions.  相似文献   
8.
Sulfonated poly (ether sulfone) (SP-ES) are prepared and optimized considering the transport properties and physicochemical stability. Afterward, nanocomposite membranes composed of SP-ES containing various loading weights of γ-Fe2O3 nanoparticles are fabricated. Nanoparticles assembled into an aligned form across the membrane by applying magnetic field during solvent casting. The effect of nanoparticles orientation is studied by consideration of the water uptake, membrane ionic conductivity, and activation energy as well as methanol permeability. Aligned membranes have a higher proton conductivity and also lower activation energy for proton migration as well as lower water uptake and methanol permeability. It is also noted that nanocomposite membranes have sufficient thermal stability and high electrochemical performance. Consequently, the anisotropic nanocomposite membranes with oriented nanoparticles demonstrate the ability to have potential application in fuel cells as well as ionic actuators.  相似文献   
9.
10.
The thermomechanical and rheological properties of various graphite/long‐chain branched polypropylene (PP) nanocomposites prepared by different mixing methods have been addressed in the current work. To improve the degree of dispersion of graphite throughout the PP domains, solid‐state milling was carried out and followed by low‐temperature melt processing in the range of melting point and the crystallization temperature of PP. As a result, the well‐dispersed graphite/PP nanocomposites revealed a higher degree of plastic deformation and energy to break in the tensile test; moreover, interestingly, nanocomposites based on branched PP showed a lower zero shear viscosity and lower isothermal crystallization rate. It was speculated that the unexpected decrease in zero shear viscosity arose from the disentanglement of the long‐chain branches in particular, when an exfoliated morphology existed within the PP matrix. J. VINYL ADDIT. TECHNOL., 21:12–17, 2015. © 2014 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号