首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3634篇
  免费   81篇
  国内免费   6篇
电工技术   71篇
综合类   2篇
化学工业   620篇
金属工艺   123篇
机械仪表   64篇
建筑科学   121篇
矿业工程   4篇
能源动力   140篇
轻工业   267篇
水利工程   20篇
石油天然气   4篇
无线电   269篇
一般工业技术   478篇
冶金工业   1027篇
原子能技术   56篇
自动化技术   455篇
  2023年   13篇
  2022年   21篇
  2021年   34篇
  2020年   33篇
  2019年   50篇
  2018年   48篇
  2017年   45篇
  2016年   64篇
  2015年   34篇
  2014年   81篇
  2013年   180篇
  2012年   111篇
  2011年   202篇
  2010年   113篇
  2009年   139篇
  2008年   147篇
  2007年   152篇
  2006年   142篇
  2005年   138篇
  2004年   90篇
  2003年   100篇
  2002年   64篇
  2001年   62篇
  2000年   62篇
  1999年   74篇
  1998年   208篇
  1997年   149篇
  1996年   100篇
  1995年   97篇
  1994年   65篇
  1993年   71篇
  1992年   36篇
  1991年   30篇
  1990年   47篇
  1989年   68篇
  1988年   72篇
  1987年   52篇
  1986年   41篇
  1985年   64篇
  1984年   30篇
  1983年   35篇
  1982年   33篇
  1981年   29篇
  1980年   33篇
  1979年   22篇
  1978年   23篇
  1977年   37篇
  1976年   48篇
  1975年   19篇
  1972年   10篇
排序方式: 共有3721条查询结果,搜索用时 406 毫秒
1.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
2.

In-air epitaxy of nanostructures (Aerotaxy) has recently emerged as a viable route for fast, large-scale production. In this study, we use small-angle X-ray scattering to perform direct in-flight characterizations of the first step of this process, i.e., the engineered formation of Au and Pt aerosol nanoparticles by spark generation in a flow of N2 gas. This represents a particular challenge for characterization because the particle density can be extremely low in controlled production. The particles produced are examined during production at operational pressures close to atmospheric conditions and exhibit a lognormal size distribution ranging from 5–100 nm. The Au and Pt particle production and detection are compared. We observe and characterize the nanoparticles at different stages of synthesis and extract the corresponding dominant physical properties, including the average particle diameter and sphericity, as influenced by particle sintering and the presence of aggregates. We observe highly sorted and sintered spherical Au nanoparticles at ultra-dilute concentrations (< 5 × 105 particles/cm3) corresponding to a volume fraction below 3 × 10–10, which is orders of magnitude below that of previously measured aerosols. We independently confirm an average particle radius of 25 nm via Guinier and Kratky plot analysis. Our study indicates that with high-intensity synchrotron beams and careful consideration of background removal, size and shape information can be obtained for extremely low particle concentrations with industrially relevant narrow size distributions.

  相似文献   
3.
Understanding the mechanism for sucrose-induced protein stabilization is important in many diverse fields, ranging from biochemistry and environmental physiology to pharmaceutical science. Timasheff and Lee [Lee, J. C. & Timasheff, S. N. (1981) J. Biol. Chem. 256, 7193-7201] have established that thermodynamic stabilization of proteins by sucrose is due to preferential exclusion of the sugar from the protein's surface, which increases protein chemical potential. The current study measures the preferential exclusion of 1 M sucrose from a protein drug, recombinant interleukin 1 receptor antagonist (rhIL-1ra). It is proposed that the degree of preferential exclusion and increase in chemical potential are directly proportional to the protein surface area and that, hence, the system will favor the protein state with the smallest surface area. This mechanism explains the observed sucrose-induced restriction of rhIL-1ra conformational fluctuations, which were studied by hydrogen-deuterium exchange and cysteine reactivity measurements. Furthermore, infrared spectroscopy of rhlL-1ra suggested that a more ordered native conformation is induced by sucrose. Electron paramagnetic resonance spectroscopy demonstrated that in the presence of sucrose, spin-labeled cysteine 116 becomes more buried in the protein's interior and that the hydrodynamic diameter of the protein is reduced. The preferential exclusion of sucrose from the protein and the resulting shift in the equilibrium between protein states toward the most compact conformation account for sucrose-induced effects on rhIL-1ra.  相似文献   
4.
Building useful systems with an ability to understand "real" natural language input has long been an elusive goal for Artificial Intelligence. Well-known problems such as ambiguity, indirectness, and incompleteness of natural language inputs have thwarted efforts to build natural language interfaces to intelligent systems. In this article, we report on our work on a model of understanding natural language design specifications of physical devices such as simple electrical circuits. Our system, called KA, solves the classical problems of ambiguity, incompleteness and indirectness by exploiting the knowledge and problem-solving processes in the situation of designing simple physical devices. In addition, KA acquires its knowledge structures (apart from a basic ontology of devices) from the results of its problem-solving processes. Thus, KA can be bootstrapped to understand design specifications and user feedback about new devices using the knowledge structures it acquired from similar devices designed previously.In this paper, we report on three investigations in the KA project. Our first investigation demonstrates that KA can resolve ambiguities in design specifications as well as infer unarticulated requirements using the ontology, the knowledge structures, and the problem-solving processes provided by its design situation. The second investigation shows that KA's problem-solving capabilities help ascertain the relevance of indirect design specifications, and identify unspecified relations between detailed requirements. The third investigation demonstrates the extensibility of KA's theory of natural language understanding by showing that KA can interpret user feedback as well as design requirements. Our results demonstrate that situating language understanding in problem solving, such as device design in KA, provides effective solutions to unresolved problems in natural language processing.  相似文献   
5.
6.
7.
We investigate the saturation effects of power broadening, Stark shifting, and population transfer on Stokes conversion in stimulated Raman scattering. We do not make the usual rotating wave approximation because the detuning from the next electronic state is assumed to be in the optical regime. Retaining the counter-rotating terms allows an exact determination of the pump and Stokes indexes of refraction. Steady-state solutions for the Stokes intensity and phase are obtained and the effects of making the rotating wave approximation (RWA) are discussed. Finally, we examine the behavior of these solutions for Stokes conversion in hydrogen gas when geometric propagation is appropriate.  相似文献   
8.
The present paper describes a new method for manufacturing a nanostructured porous layer of TiO2 on a conducting glass substrate for use in a dye-sensitized photoelectrochemical cell. The method involves deposition of a layer of semiconductor particles onto a conducting substrate and compression of the particle layer to form a mechanically stable, electrically conducting, and porous nanostructured film at room temperature. Photoelectrochemical characteristics and morphology of the resulting nanostructured films are presented. The potential use of the new manufacturing method in the future applications of nanostructured systems is discussed.  相似文献   
9.
In order to investigate the effect of cerium oxide on Cu–Zn-based mixed-oxide catalysts four catalyst samples were characterized by means of XRD, in situ XANES and thermogravimetric analysis. The activity of the catalyst samples was tested for the forward water–gas shift reaction. Cerium oxide was found to increase the crystallinity of the ZnO phase indicating a segregation of the Cu and ZnO phases. The TOF of the water–gas shift reaction based on chemisorption data was found to be independent of composition and preparation conditions of the four catalyst samples. In contrast, the catalyst stability depends on composition and preparation conditions. Cerium oxide impregnated before calcination of the hydrotalcite-based Cu–Zn precursors leads to a more stable water–gas shift catalyst.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号