首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学工业   5篇
金属工艺   2篇
机械仪表   1篇
建筑科学   4篇
轻工业   8篇
无线电   5篇
一般工业技术   1篇
冶金工业   14篇
自动化技术   3篇
  2022年   2篇
  2020年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1961年   2篇
  1960年   1篇
  1957年   1篇
  1955年   3篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Previous studies indicate a suppressive influence of fish oils on rodent malaria. The present work was carried out to study (i) the dose-effect relation between dietary fish oils and lethality of primary malaria infection in mice; (iii) the modifying influence of vitamin E; and (iii) the effect of previous fish oil feeding on parasitemia and lethality of a rechallenge infection. For two or four weeks, groups of weanling male mice were fed a standard laboratory diet or one of eight purified diets containing various amounts of fish oil (providing 6–21% of energy). The diets were prepared with and without vitamin E. After the two-or four-week feeding period, the mice were injected intraperitoneally withPlasmodium yoelii yoelii-infected erythrocytes. Six months after the primary infection (four months after discontinuing fish oil feeding), the surviving mice were again injected intraperitoneally with parasitized red blood cells (or even better—erythrocytes, erythrocytes are used elsewhere). Primary malaria infection was lethal in mice fed standard diet alone or with fish oil and vitamin E added. In contrast, feeding a fish oil-based diet without vitamin E improved survival to at least 70% if the mice had been fed these diets for four weeks. Protection against malaria did not seem to be related to the fish oil dose used. Regardless of the previous fish oil dose, all the mice surviving the primary infection survived the rechallenge infection with low parasitaemias. The results suggest that the prooxidant nature of highly unsaturated fatty acids in fish oils may beneficially influence malaria infection, and may also increase the resistance against reinfection for some time after discontinuing fish oil intake.  相似文献   
2.
This study examined the spatiotemporal patterns of episodic acidification in 87 weakly buffered streams in Sweden at a monthly sampling frequency during a ten-year study period (1998-2007). Time series of pre-industrial pH (pH0) were reconstructed from the acidification model MetaMAGIC, and the acidification impact was defined by the difference between the pH0 and the contemporary pH (i.e., ΔpH = pH0 − pHt). Acidification episodes were defined as observations for which the pHt was at least 0.4 units lower than average, in combination with a ?pH at least 0.2 units higher than average. Thus, only occasions in which the stream water was both more acidic and more acidified than average were characterized as acidification episodes. For each observed episode, the primary cause was identified from one of the following five possible drivers: dilution, increase in sulfate, nitrate or organic acids, or sea salt deposition. In total, 258 episodes were observed during the study period. The study showed that streams that were acidified during baseflow (ΔpH > 0.4), but not chronically acidic (pH > 5.2), were subjected to regular episodic acidification. Dilution was the single most important cause and the main driver for 58% of the identified episodes. Increases in sulfate concentrations were also relatively common (26% of episodes), whereas increases in nitrate and organic acids as well as sea salt deposition were of minor importance. The total number of dilution-related acidification episodes within a year had a significant (p = 0.005) positive correlation (r = + 0.83) with the average annual precipitation. Occurrences of sulfate episodes were related to droughts during the preceding summers. While the number of streams that are susceptible to episodic acidification will decrease as a consequence of recovery from acidification, the hydrological and meteorological consequences of future climate change may make episodic acidification more common.  相似文献   
3.
Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of lidocaine, a test drug compound, on a platinum electrode. Lidocaine was oxidized at constant potential and by square-wave potential pulses with different cycle times, and the reaction products were analyzed by liquid chromatography-mass spectrometry [LC-MS(/MS)]. Application of constant potentials of up to +5.0 V resulted in relatively low yields of N-dealkylation and 4-hydroxylation products, while oxidation by square-wave potential pulses generated up to 50 times more of the 4-hydroxylation product at cycle times between 0.2 and 12 s (estimated yield of 10%). The highest yield of the N-dealkylation product was obtained at cycle times shorter than 0.2 s. Tuning of the cycle time is thus an important parameter to modulate the selectivity of electrochemical oxidation reactions. The N-oxidation product was only obtained by electrochemical oxidation under air atmosphere due to reaction with electrogenerated hydrogen peroxide. Square-wave potential pulses may also be applicable to modulate the selectivity of electrochemical reactions with other drug compounds in order to generate oxidation products with greater selectivity and higher yield based on the optimization of cycle times and potentials. This considerably widens the scope of direct electrochemistry-based oxidation reactions for the imitation of in vivo oxidative drug metabolism.  相似文献   
4.
Magnetic resonance imaging (MRI) allows a physician to obtain images of internal organs noninvasively. Imaging a moving organ such as the heart requires a trigger so that successive scans can be synchronized. In the case of cardiac imaging this trigger is the electrocardiogram (ECG). When a patient is in an MRI scanner he/she is subjected to both static and dynamic magnetic fields which can cause interference In the ECG. The dynamic fields consist of 8- to 64-MHz radio frequency (RF) pulses and low-frequency magnetic gradient pulses with frequency components below 100 Hz. Conventional bandpass filters are only moderately effective because the passband allows magnetic gradient-induced interference to be superimposed on the ECG, causing distortion of the signal. This paper describes a technique which can be used to remove induced MRI gradient interference from an ECG recorded on a patient inside the bore of a MRI scanner. Induced signal from an external loop is subtracted from the ECG to minimize the low-frequency interference. The gradient induced low-frequency interference was reduced to approximately 20% of its magnitude when using conventional ECG amplifiers  相似文献   
5.
Assessed attitudes of 214 employees at all organizational levels in a large utility company toward a program involving hiring the hard-core unemployed both before program initiation and after 3 mo. of experience with the program. Ss were administered the Consequences Model Questionnaire. The hypothesized ambivalence of management personnel was verified, as was the differential impact of the program on employees at various levels. In general, the initially positive responses toward the program gave way to a position of balanced neutrality, a state in which assets were counterbalanced by liabilities. Results are interpreted in terms of the impact of the initial position of top management on program operation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
6.
7.
8.
Anthropogenic acidification caused by aerial deposition of acidifying substances is known to have detrimental effects on freshwater biota, including reductions in species diversity and ecosystem functioning. However, such impairment is not found in systems acidified to a similar extent by natural processes. A proposed explanation for this difference is that freshwater organisms have had far more time to evolve and adapt to natural than anthropogenic acidification. Thus, where acidity is natural, adaptation may account for diverse and functional communities. Here, we investigated whether adaptations--that were previously implied to occur on small spatial scales--may explain the species richness patterns on a much larger geographical scale, apply to ecological functioning, and are relevant in Sweden, where natural acidity is geologically relatively recent. Therefore, we compared differences in species diversity and ecosystem process rates between 24 acidic and circumneutral streams in northern Sweden, where acidity is natural, and southern Sweden, where acidity is largely anthropogenic. In agreement with our predictions, the difference in macroinvertebrate species richness between acidic and circumneutral streams was threefold larger in the region where acidity was anthropogenic than where it was natural, albeit marginally non-significantly. In contrast, no such trend was found for the rates of decomposition by microbes and leaf-feeding macroinvertebrates, possibly due to functional redundancy. The structure of species assemblages differed between acidic and circumneutral sites and between the regions. Our results agree with the notion that freshwater biota are adapted to natural acidity, but competing explanations including other differences in water chemistry and differences in the biogeographical colonization histories may also account for part of the observed patterns. Since naturally acidic environments similar to those in northern Sweden are widespread, we predict that diverse and functionally efficient freshwater communities that are well adapted to such conditions are more common than currently recognized.  相似文献   
9.
Detergency mechanisms of lipids from single cotton fibers were visualized by means of confocal laser scanning microscopy (CLSM). Fibers were soiled with different types of lipids: olive oil, lard and tri-C10, and subsequently stained with the fluorescent probe Nile Red. A surfactant composition of 300 μM C12E6/LAS (1:2 mol%) was used to mimic the surfactants used in a common washing solution. It was evident from the captured image series that the different kinds of soiling were removed by different mechanisms by the surfactants, depending on the fluidity of the lipid. Roll-up was the main mechanism when removing olive oil, whereas emulsification (necking) and/or solubilization were observed in the removal of lard and tri-C10. Only 20–25% of the olive oil remained after treatment with surfactants, which was much less compared to the solid fats where roughly 50% remained at end of treatment. The effect of adding lipases to the detergent formulation was clearly seen, both by an apparently higher rate of removal of olive oil but also using double injection when removing lard. A first injection of only surfactants removed a certain part of the lard as emulsion droplets stuck onto the fiber. A second injection of both lipases and surfactants was able to remove some of the preformed emulsion particles and reduce the overall remaining lard content on the cotton fiber.
Thomas H. CallisenEmail:
  相似文献   
10.
We have combined a long-term hydrochemistry model (MAGIC) with a model that predicts short-term transient changes in hydrochemistry (pBDM) during hydrological events in order to improve the temporal resolution of retrospective analyses and future predictions of streamwater acidification. The model has been applied to a heavily impacted catchment in the Czech Republic. Spring flood acid-neutralizing capacity (ANC), pH, and inorganic monomeric aluminum (Ali(n+)) were simulated for the years of 1860, 1900, 1930, 1950, 1965, and 1985, measured in 1999, and predicted for 2030 using two different emission control scenarios. If the emission reduction according to the current legislation scenario is implemented, the model predicts that the spring flood pH, ANC, and Ali(n+) will recover close to the level of the 1950s by 2030. This will occur despite the annual average chemistry being farfrom having recovered to that level. The results suggest that the recovery of spring flood events is faster then the recovery of annual average chemistry and that much of what is won by further emission reduction will not be fully realized on an annual time scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号