首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
建筑科学   3篇
冶金工业   1篇
  2018年   2篇
  2011年   1篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This paper outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulated using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.  相似文献   
2.
The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs and floors can be between 0.1 and 0.2 W/(m2 K). The best windows have U-factors of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e., solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use are of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define material research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.  相似文献   
3.
Virtually all residential and commercial windows in the U.S. have some form of window attachment, but few have been designed for energy savings. ISO 15099 presents a simulation framework to determine thermal performance of window attachments, but the model has not been validated for these products. This paper outlines a review and validation of the ISO 15099 centre-of-glass heat transfer correlations for perimeter gaps (top, bottom, and side) in naturally ventilated cavities through measurement and simulation. The thermal transmittance impact due to dimensional variations of these gaps is measured experimentally, simulated using computational fluid dynamics, and simulated utilizing simplified correlations from ISO 15099. Results show that the ISO 15099 correlations produce a mean error between measured and simulated heat flux of 2.5?±?7%. These tolerances are similar to those obtained from sealed cavity comparisons and are deemed acceptable within the ISO 15099 framework.  相似文献   
4.
The role of lipopolysaccharide (LPS) and Shiga-like toxin (SLT) in the pathogenesis of hemolytic uremic syndrome (HUS) was studied in a mouse model. Mice inoculated intragastrically with Escherichia coli O157:H7 developed gastrointestinal, neurologic, and systemic symptoms, necrotic foci in the colon, glomerular and tubular histopathology, and fragmented erythrocytes. LPS-responder (C3H/HeN) mice developed a combination of neurologic and systemic symptoms, whereas LPS-nonresponder (C3H/HeJ) mice had a biphasic course of disease, first developing systemic symptoms and later severe neurologic symptoms. Mice inoculated with SLT-II-positive strains developed severe neurotoxic symptoms and a higher frequency of systemic symptoms and glomerular pathology compared with SLT-II-negative strains. Anti-SLT-II antibodies protected against these symptoms and pathology. These results demonstrate that this model could be used to study aspects of human HUS and that both LPS and SLT are important for disease development.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号