首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   10篇
  国内免费   4篇
电工技术   11篇
化学工业   94篇
金属工艺   11篇
机械仪表   4篇
建筑科学   7篇
能源动力   19篇
轻工业   14篇
水利工程   1篇
石油天然气   1篇
无线电   35篇
一般工业技术   93篇
冶金工业   43篇
原子能技术   3篇
自动化技术   32篇
  2024年   1篇
  2023年   8篇
  2022年   5篇
  2021年   21篇
  2020年   13篇
  2019年   14篇
  2018年   17篇
  2017年   12篇
  2016年   10篇
  2015年   11篇
  2014年   20篇
  2013年   28篇
  2012年   13篇
  2011年   20篇
  2010年   15篇
  2009年   11篇
  2008年   18篇
  2007年   13篇
  2006年   15篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   9篇
  1997年   11篇
  1996年   17篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
  1970年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
1.
Proficiency on underlying mechanism of rubber-metal adhesion has been increased significantly in the last few decades. Researchers have investigated the effect of various ingredients, such as hexamethoxymethyl melamine, resorcinol, cobalt stearate, and silica, on rubber-metal interface. The role of each ingredient on rubber-metal interfacial adhesion is still a subject of scrutiny. In this article, a typical belt skim compound of truck radial tire is selected and the effect of each adhesive ingredient on adhesion strength is explored. Out of these ingredients, the effect of cobalt stearate is found noteworthy. It has improved adhesion strength by 12% (without aging) and by 11% (humid-aged), respectively, over control compound. For detailed understanding of the effect of cobalt stearate on adhesion, scanning electron microscopy and energy dispersive spectroscopy are utilized to ascertain the rubber coverage and distribution of elements. X-ray photoelectron spectroscopy results helped us to understand the impact of CuXS layer depth on rubber-metal adhesion. The depth profile of the CuXS layer was found to be one of the dominant factors of rubber-metal adhesion retention. Thus, this study has made an attempt to find the impact of different adhesive ingredients on the formation of CuXS layer depth at rubber-metal interface and establish a correlation with adhesion strength simultaneously.  相似文献   
2.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
3.
4.
Silicoaluminophosphate (SAPO-5) molecular sieves have been synthesised from reaction mixtures having a molar composition of: 0.7–1.0 Al2O3:0.7–1.0 P2O5:0.01–2.0 SiO2:xR:40 H2O (where R = (C2H3)3N or (C2H3)4NOH and x = 1.5–2.5 for (C2H5)5N and 0.5 for (C2H5)4NOH, at 473 K using various sources of alumina and silica. The effects of (i) varying the crystallinity of the alumina source (boehmite) and (ii) the use of different silica sources such as freshly prepared silica either from sodium silicate or paddy husk extract, silica gel from commercial water-glass, and tetraethyl orthosilicate have been studied. The crystallinity of boehmite has been found to have a strong effect on its reactivity towards the formation of SAPO-5. The activity of boehmite for SAPO-5 formation increased with a decrease in its crystallinity (or with increase in its moisture content). Any silica source devoid of sodium ions could be employed for the synthesis of SAPO-5. The process of crystallisation started as early as within 1.5 h of reaction and incorporation of silicon into the AlPO4 framework has been noted at this stage. Formation of some tridymite phase as impurity has been observed under conditions such as (i) SiO2 concentration > 1.7 mole and (ii) x > 2.0 when R = (C2H5)3N.  相似文献   
5.
High-temperature molding of Brabender-mixed blend of polyacrylic acid (PAA) and epoxidized natural rubber (ENR) causes thermally induced crosslinking between PAA and ENR. Studies on Monsanto rheometry of the blend and physical properties, solvent swelling, and dynamic mechanical properties of the molded blend show that both mixer rotor speed and carbon black filler influence the crosslinking between the component polymers. For example, the extent of crosslinking for the 50–50 PAA–ENR blend was found maximum when the component polymers were mixed at 40 rpm, but the same blend filled with 30 phr HAF carbon black filler showed maximum crosslinking when mixing was carried out at 120 rpm. The results have been explained on the basis of formation of network on the filler surface, which in turn depends on two competing factors: increase in bound rubber formation with increase in filler loading at a fixed rotor speed and enhanced degradation of ENR at higher mixer rotor speed at a fixed filler loading. © 1994 John Wiley & Sons, Inc.  相似文献   
6.
Different materials have different coefficients of thermal expansion, which is a measure of the change in length for a given change in temperature. When different materials are combined structurally, as in a bonded joint, a temperature change leads to stresses being set up. These stresses are present even in an unloaded joint which has been cured at say 150°C and cooled to room temperature. Further stresses result from operations at even lower temperatures.

In addition to temperature-induced stresses, account also has to be taken of changes in adhesive properties. Low temperatures cause the adhesive to become more brittle (reduced strain to failure), while high temperatures cause the adhesive to become more ductile, but make it less strong and more liable to creep.

Theoretical predictions are made of the strength of a series of aluminium/CFRP joints using three different adhesives at 20°C and 55°C. Various failure criteria are used to show good correlation with experimental results.  相似文献   
7.
Complex reflectance phenomena such as specular reflections confound many vision problems since they produce image ‘features’ that do not correspond directly to intrinsic surface properties such as shape and spectral reflectance. A common approach to mitigate these effects is to explore functions of an image that are invariant to these photometric events. In this paper we describe a class of such invariants that result from exploiting color information in images of dichromatic surfaces. These invariants are derived from illuminant-dependent ‘subspaces’ of RGB color space, and they enable the application of Lambertian-based vision techniques to a broad class of specular, non-Lambertian scenes. Using implementations of recent algorithms taken from the literature, we demonstrate the practical utility of these invariants for a wide variety of applications, including stereo, shape from shading, photometric stereo, material-based segmentation, and motion estimation.  相似文献   
8.
One of the simplest ways to generate electric power from waste heat is thermoelectric (TE) energy conversion. So far, most of the research on thermoelectrics has focused on inorganic bulk TE materials and their device applications. However, high production costs per power output and limited shape conformity hinder applications of state-of-the-art thermoelectric devices (TEDs). In recent years, printed thermoelectrics has emerged as an exciting pathway for their potential in the production of low-cost shape-conformable TEDs. Although several inorganic bulk TE materials with high performance are successfully developed, achieving high performance in inorganic-based printed TE materials is still a challenge. Nevertheless, significant progress has been made in printed thermoelectrics in recent years. In this review article, it is started with an introduction signifying the importance of printed thermoelectrics followed by a discussion of theoretical concepts of thermoelectricity, from fundamental transport phenomena to device efficiency. Afterward, the general process of inorganic TE ink formulation is summarized, and the current development of the inorganic and hybrid inks with the mention of their TE properties and their influencing factors is elaborated. In the end, TEDs with different architecture and geometries are highlighted by documenting their performance and fabrication techniques.  相似文献   
9.
BACKGROUND: A major bottleneck in microalgal biodiesel production is lipid content, which is often low in microalgal species. The present study examines Chlorella vulgaris as a potential feedstock for biodiesel by identifying and evaluating the relationships between the critical variables that enhance the lipid yield, and characterizes the biodiesel produced for various properties. RESULTS: Factors affecting lipid accumulation in a green microalga, Chlorella vulgaris were examined. Multifactor optimization raised the lipid pool to 55% dry cell weight against 9% control. When C. vulgaris cells pre‐grown in glucose (0.7%)‐supplemented medium were transferred to the optimized condition at the second stage, the lipid yield was boosted to 1974 mg L?1, a value almost 20‐fold higher than for the control. The transesterified C. vulgaris oil showed the presence of ~82% saturated fatty acids, with palmitate and stearate as major components, thus highlighting the oxidative stability of C. vulgaris biodiesel. The fuel properties (density, viscosity, acid value, iodine value, calorific value, cetane index, ash and water contents) are comparable with the international (ASTM and EN) and Indian (IS) biodiesel standards. CONCLUSION: C. vulgaris biomass with 55% lipid content and adequate fuel properties is potentially a renewable feedstock for biodiesel. Copyright © 2011 Society of Chemical Industry  相似文献   
10.
After a gap of more than two decades, Concentrator Photovoltaics (CPV) technology is once again under spotlight for making use of the best available solar cell technologies and improving the overall performance. CPV finds its use in a number of applications ranging from building integration to huge power generation units. Although the principles of solar concentration are well understood, many practical design, operation, control issues require further understanding and research. A particular issue for CPV technology is the non-uniformity of the incident flux which tends to cause hot spots, current mismatch and reduce the overall efficiency of the system. Understanding of this effect requires further research, and shall help to employ the most successful means of using solar concentrators. This study reviews the causes and effects of the non-uniformity in the CPV systems. It highlights the importance of this issue in solar cell design and reviews the methods for the solar cell characterization under non-uniform flux conditions. Finally, it puts forward a few methods of improving the CPV performance by reducing the non-uniformity effect on the concentrator solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号