首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   1篇
建筑科学   1篇
无线电   1篇
冶金工业   1篇
  2021年   2篇
  2020年   1篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Increased outdoor concentrations of fine particulate matter (PM2.5) and oxides of nitrogen (NO2, NOx) are associated with respiratory and cardiovascular morbidity in adults and children. However, people spend most of their time indoors and this is particularly true for individuals with chronic obstructive pulmonary disease (COPD). Both outdoor and indoor air pollution may accelerate lung function loss in individuals with COPD, but it is not feasible to measure indoor pollutant concentrations in all participants in large cohort studies. We aimed to understand indoor exposures in a cohort of adults (SPIROMICS Air, the SubPopulations and Intermediate Outcome Measures in COPD Study of Air pollution). We developed models for the entire cohort based on monitoring in a subset of homes, to predict mean 2-week–measured concentrations of PM2.5, NO2, NOx, and nicotine, using home and behavioral questionnaire responses available in the full cohort. Models incorporating socioeconomic, meteorological, behavioral, and residential information together explained about 60% of the variation in indoor concentration of each pollutant. Cross-validated R2 for best indoor prediction models ranged from 0.43 (NOx) to 0.51 (NO2). Models based on questionnaire responses and estimated outdoor concentrations successfully explained most variation in indoor PM2.5, NO2, NOx, and nicotine concentrations.  相似文献   
2.
The development of novel anti-infectives against Kinetoplastids pathogens targeting proteins is a big problem occasioned by the antigenic variation in these parasites. This is also a global concern due to the zoonosis of these parasites, as they infect both humans and animals. Therefore, we need not only to create novel antibiotics, but also to speed up the development pipeline for these antibiotics. This may be achieved by using novel drug targets for Kinetoplastids drug discovery. In this study, we focused our attention on motifs of rRNA molecules that have been created using homology modeling. The RNA is the most ambiguous biopolymer in the kinetoplatid, which carries many different functions. For instance, tRNAs, rRNAs, and mRNAs are essential for gene expression both in the pro-and eukaryotes. However, all these types of RNAs have sequences with unique 3D structures that are specific for kinetoplastids only and can be used to shut down essential biochemical processes in kinetoplastids only. All these features make RNA very potent targets for antibacterial drug development. Here, we combine in silico methods combined with both computational biology and structure prediction tools to address our hypothesis. In this study, we outline a systematic approach for identifying kinetoplastid rRNA-ligand interactions and, more specifically, techniques that can be used to identify small molecules that target particular RNA. The high-resolution optimized model structures of these kineoplastids were generated using RNA 123, where all the stereochemical conflicts were solved and energies minimized to attain the best biological qualities. The high-resolution optimized model’s structures of these kinetoplastids were generated using RNA 123 where all the stereochemical conflicts were solved and energies minimized to attain the best biological qualities. These models were further analyzed to give their docking assessment reliability. Docking strategies, virtual screening, and fishing approaches successfully recognized novel and myriad macromolecular targets for the myxobacterial natural products with high binding affinities to exploit the unmet therapeutic needs. We demonstrate a sensible exploitation of virtual screening strategies to 18S rRNA using natural products interfaced with classical maximization of their efficacy in phamacognosy strategies that are well established. Integration of these virtual screening strategies in natural products chemistry and biochemistry research will spur the development of potential interventions to these tropical neglected diseases.  相似文献   
3.
Early passive case finding and treatment compliance are the cornerstones of tuberculosis (TB) control programs. As human behavior plays a critical role in both strategies, a better understanding of it is important for the planning and implementation of a successful TB programme, especially for the health education component, Our qualitative study in Uasin Gishu, Kenya, aimed at a better understanding of the community's beliefs and perceptions of TB, recognition of early symptoms and health-seeking behavior. Five focus groups with a total of 49 people were held: on with hospitalized TB patients, two with rural and two with urban participants. Tuberculosis is well known in the communities and many vernacular names for the disease exist. TB is perceived as a contagious, 'sensitive' disease difficult to diagnose and treat. Community members believe that TB should be diagnosed and treated in a hospital or by a medical doctor and not at the peripheric level. TB treatment is perceived as long, agonising and cumbersome. Traditional treatment is considered a valid alternative to modern treatment, believed to be as effective and much shorter. Initial symptoms such as cough and fever are often overlooked and/or confused with malaria or a common cold. Symptoms associated with the disease refer to the later stage of TB. TB is attributed to causes such as smoking, alcohol, hard work, exposure to cold and sharing with TB patients. Many participants believe TB is hereditary. Prolonged self-treatment and consultation with the traditional health sector as well as the social stigma attached to the disease increase patient's delay. Only after symptoms persist for some time and/or the suspect's health deteriorates, are modern health services consulted. These social conditions necessitate culturally sensitive health education, taking into account local perceptions of TB.  相似文献   
4.

This paper proposes a new ultra-wideband (UWB) antenna. The proposed antenna is designed for operation from 3 to 15 GHz. It consists of a Sierpinski fractal based ellipse etched onto the radiating patch and a rectangular defected ground structure in the ground plane. Details of the proposed antenna as well as with variations in design variables are presented and the results discussed.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号