首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   20篇
  国内免费   2篇
电工技术   2篇
化学工业   120篇
金属工艺   11篇
机械仪表   3篇
建筑科学   3篇
矿业工程   1篇
能源动力   7篇
轻工业   2篇
石油天然气   1篇
无线电   21篇
一般工业技术   43篇
冶金工业   5篇
原子能技术   1篇
自动化技术   20篇
  2023年   6篇
  2022年   31篇
  2021年   24篇
  2020年   4篇
  2019年   10篇
  2018年   11篇
  2017年   12篇
  2016年   13篇
  2015年   3篇
  2014年   9篇
  2013年   12篇
  2012年   14篇
  2011年   15篇
  2010年   12篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  1999年   1篇
  1998年   2篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1986年   1篇
排序方式: 共有240条查询结果,搜索用时 62 毫秒
1.
It is shown that the features of La2–x(Ba,Sr)xCuO4 around x=0.125 can be. treated as a consequence of alternate-layer doping when doped holes are added to each second CuO2 plane. The model of heterovalence doping of high-Tc superconductors (HTSC) is proposed to account for the evolution of HTSC properties with doping. According to this model the transition from insulator to metal state under doping proceeds through the stage of-U-centers formation, which arise when the definite spatial arrangement of the doping atoms is realized.  相似文献   
2.
Regular physical activity in cyclic sports can influence the so-called “angiogenic switch”, which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the “angiogenic switch” problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the “angiogenic switch” is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the “angiogenic switch” as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.  相似文献   
3.
Relatively recently, we advanced a route to create, in a controlled fashion, combined horizontal and vertical stratified structures by simple and energy-efficient processing operations employing static mixing elements. While in state-of-the-art static mixing the focus is on layer multiplication, here the aim is to create hierarchical fractal structures. Therefore, the main question addressed in this article is how structures, rather than layers, can be multiplied. The key aspect is the addition of layers on the sides or in the midplane of the flow during the process; every addition step increases the hierarchy by one level. This article derives the general formalism for forming fractal structures with controlled hierarchy, and we develop the language required to design and construct the dies. The main part of the article addresses this main topic and is based on the splitting serpentine static mixer geometry that can be easily made on the parting surfaces of a mold on both the micro- and the macroscale. The second part of the article addresses the strategy to minimize the number of mirroring steps, eventually avoiding mirroring completely, and is based on the rotation-free multiflux static mixer geometry. With the design language derived, complex hierarchical fractal structures can be generated simply by changing the number and sequence of operators within extrusion dies or molds, providing a one-step solution to produce material structures for potential use in diverse applications ranging from advanced mechanical systems to photovoltaic devices, where controlled assembly of dissimilar materials, and the realization of huge interfaces and genuine cocontinuity throughout the cross section, is critical.  相似文献   
4.
Gas phase reactions of Mo+ and W+ ions with the molecules of various oxidants (NO, O2, N2O, CH2O, C2H4O) were studied using ion cyclotron resonance. In oxidation with N2O the mono-, di- and trioxide metal cations are formed consecutively. The trioxide MO3 + ions of both metals react with CO to form CO2 and MO2 + ions. In this way, catalytic reaction N2O + CO N2 + CO2 occurs in the gas phase with MoO3 + /MoO2 + and WO3 +/WO2 + couples as catalysts. The rate constants have been measured for both stages of the catalytic cycle as well as for the stages of the catalyst preparation. Metal-oxygen bond energies were estimated for MoOx + and WOx + species with various x. The mechanism of CO oxidation with MoOx + and WOx + cations as catalysts in the gas phase is discussed in comparison with that for the oxidation over classical solid oxide catalysts.  相似文献   
5.
All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often diminishes the quality of the resonances. The substrate imposes limitations on the metasurface functionalities, especially for infrared and terahertz frequencies. Here a novel concept of membrane Huygens' metasurfaces is introduced. The metasurfaces feature an inverted design, and they consist of arrays of holes made in a thin membrane of high‐index dielectric material, with the response governed by the electric and magnetic Mie resonances excited within dielectric domains of the membrane. Highly efficient transmission combined with the 2π phase coverage in the freestanding membranes is demonstrated. Several functional metadevices for wavefront control are designed, including beam deflector, a lens, and an axicon. Such membrane metasurfaces provide novel opportunities for efficient large‐area metadevices, whose advanced functionality is defined by structuring rather than by chemical composition.  相似文献   
6.
The paper deals with the study of the dependence of the number of the main components of the primary recrystallization texture on the deformation rate during uniaxial tension (with contraction) carried out before the cold rolling of an electric steel (bcc soft magnetic alloy Fe-3 wt % Si) stripe up to its final thickness. It is found that the maximum increase in the volume shares of the auspicious components {111}??112??, {112}??351??, and {113}??361?? in the primary recrystallization texture occurs during tension with a minimal deformation rate in the range of 0.00015?C1.10 s?1.  相似文献   
7.
The influence of different SPS-based methods, that is, conventional spark plasma sintering (SPS), flash SPS (FSPS), and reactive SPS (RSPS) on the properties of Al2O3/SiC composite was investigated. It was shown that the application of preliminary high energy ball milling of the powders significantly enhances the sinterability of the ceramics. It was also demonstrated that FSPS provides unique conditions for rapid, that is, less than a minute, consolidation of refractory ceramics. The Al2O3-20 wt% SiC composite produced by FSPS possesses the highest relative density (~99%), fracture toughness (7.5 MPa m1/2), hardness (20.3 GPa) and wear resistance among all ceramics produced by other SPS-based approaches with dwelling time 10 minutes. The RSPS ceramics hold the highest Young's modulus (390 GPa). Substitution of micron-sized Al2O3 particles by nano alumina does not lead to measurable enhancement of the mechanical properties.  相似文献   
8.
Mass eutrophication of microalgae and cyanobacteria is observed in Lake Baikal in the past decade. In this paper, the concept of replaceable adsorption filter material based on chitosan flocculant filler and chlorinated polyvinyl chloride polymer nonwoven material are proposed. Functional and mechanical properties and morphology of the material are investigated depending on a packing density and a degree of chitosan filling. The introduction of 45% chitosan increases the Young's modulus up to 10 times, and it makes the material more rigid in 2.8 times. The high efficiency of sorption and growth inhibition of cumulative biomass culture was shown. The biomass source is taken from the coast of Barguzinsky Bay of Lake Baikal. Dominant species is microalgae of Scenedesmus genus.  相似文献   
9.
10.
It has been found that thermocycling near the Curie temperature improves magnetic properties of magnetically soft alloys and, in particular, decreases the coercive force of the Fe-70 wt % Ni by 15% in comparison with that observed after conventional thermomagnetic treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号